Characterization and disruption of exonuclease genes from Streptomyces aureofaciens B96 and S. coelicolor A3(2)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bakteriální proteiny chemie genetika izolace a purifikace metabolismus MeSH
- deoxyribonukleasy chemie genetika izolace a purifikace metabolismus MeSH
- exonukleasy chemie genetika izolace a purifikace metabolismus MeSH
- fosfatasy chemie genetika izolace a purifikace metabolismus MeSH
- klonování DNA MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- stabilita enzymů MeSH
- Streptomyces aureofaciens chemie enzymologie genetika MeSH
- Streptomyces coelicolor chemie enzymologie genetika MeSH
- substrátová specifita MeSH
- umlčování genů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- deoxyribonukleasy MeSH
- exonukleasy MeSH
- fosfatasy MeSH
Streptomyces aureofaciens B96 produces several intra- and extracellular enzymes with deoxyribonuclease activity. According to the sequence of the previously published gene exoSc from S. coelicolor A3(2), the DNA sequence from S. aureofaciens B96 was amplified, cloned and expressed in E. coli. The protein product of exoSa gene, recExoSa, was also an exonuclease with DNAase and 5'-phosphomonoesterase activities at optimum temperature 37 degrees C and pH 8.0. It degraded only linear DNA (chromosomal, double-stranded and single-stranded) and linear plasmid DNA from both ends, with a preference to blunt ends in comparison with overhang ends. The purified enzyme exhibited no RNAase activity. Both exoSc and exoSa genes were interrupted by the apramycin resistance gene; constructed fragments were transformed into particular streptomyces protoplasts. Mutation caused by exoSa disruption in S. aureofaciens chromosome and mutation by interrupted exoSc in S. coelicolor were lethal.
Zobrazit více v PubMed
Biochim Biophys Acta. 2007 Apr;1770(4):630-7 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Biochim Biophys Acta. 2005 Jan 18;1721(1-3):116-23 PubMed
J Bacteriol. 2005 Nov;187(21):7374-81 PubMed
Folia Microbiol (Praha). 2008;53(2):115-24 PubMed
Int Microbiol. 2000 Sep;3(3):153-8 PubMed
J Gen Microbiol. 1970 Jan;60(1):43-50 PubMed
Biochem J. 1995 Feb 15;306 ( Pt 1):93-100 PubMed
Microbiology (Reading). 2002 Feb;148(Pt 2):405-412 PubMed
J Cell Biol. 1999 May 3;145(3):515-25 PubMed
Gene. 1992 Feb 1;111(1):61-8 PubMed
J Mol Biol. 1986 May 5;189(1):113-30 PubMed
Nucleic Acids Res. 1988 Nov 25;16(22):10881-90 PubMed
Res Microbiol. 2006 Mar;157(2):143-52 PubMed
Gene. 1997 May 6;190(2):315-7 PubMed
J Biol Chem. 1974 Jul 25;249(14):4553-61 PubMed
Antonie Van Leeuwenhoek. 2008 Aug;94(2):173-86 PubMed
Nucleic Acids Res. 2002 Jan 15;30(2):E2 PubMed
Gene. 2005 Jun 20;353(1):53-66 PubMed
Eur J Biochem. 2003 Apr;270(8):1838-49 PubMed
J Biol Chem. 1999 Jul 16;274(29):20366-75 PubMed
Mutational biosynthesis of neomycin analogs by a mutant of neomycin-producing Streptomyces fradiae