An organometallic route to long helicenes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19633186
PubMed Central
PMC2726423
DOI
10.1073/pnas.0902612106
PII: 0902612106
Knihovny.cz E-zdroje
- MeSH
- molekulární modely MeSH
- organokovové sloučeniny chemie MeSH
- polycyklické sloučeniny chemická syntéza chemie MeSH
- rastrovací tunelová mikroskopie MeSH
- stereoizomerie MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- helicenes MeSH Prohlížeč
- organokovové sloučeniny MeSH
- polycyklické sloučeniny MeSH
Along with the recent progress in the development of advanced synthetic methods, the chemical community has witnessed an increasing interest in promising carbon-rich materials. Among them, helicenes are unique 3D aromatic systems that are inherently chiral and attractive for asymmetric catalysis, chiral recognition and material science. However, there have been only limited attempts at synthesizing long helicenes, which represent challenging targets. Here, we report on an organometallic approach to the derivatives of undecacyclic helicene, which is based on intramolecular [2 + 2 + 2] cycloisomerization of aromatic hexaynes under metal catalysis closing 6 new cycles of a helicene backbone in a single operation. The preparation of nonracemic compounds relied on racemate resolution or diastereoselective synthesis supported by quantum chemical (density functional theory) calculations. The fully aromatic [11]helicene was studied in detail including the measurement and theoretical calculation of its racemization barrier and its organization on the InSb (001) surface by STM. This research provides a strategy for the synthesis of long helical aromatics that inherently comprise 2 possible channels for charge transport: Along a pi-conjugated pathway and across an intramolecularly pi-pi stacked aromatic scaffold.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17605 PubMed
Zobrazit více v PubMed
Hirsch A, Brettreich M, editors. Fullerenes. Weinheim: Wiley-VCH; 2005.
Jorio A, Dresselhaus G, Dresselhaus MS, editors. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Topics in Applied Physics) Berlin: Springer; 2008.
Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–191. PubMed
Rubin Y, Diederich F. In: Stimulating Concepts in Chemistry. Vögtle F, Stoddart JF, Shibasaki M, editors. Weinheim: Wiley-VCH; 2000. pp. 163–186.
Becker S, Müllen K. In: Stimulating Concepts in Chemistry. Vögtle F, Stoddart JF, Shibasaki M, editors. Weinheim: Wiley-VCH; 2000. pp. 317–337.
Rajca A, Miyasaka M. In: Functional Organic Materials. Müller TJJ, Bunz UHF, editors. Weinheim: Wiley-VCH; 2007. pp. 547–581.
Urbano A. Recent developments in the synthesis of helicene-like molecules. Angew Chem Int Ed. 2003;42:3986–3989. PubMed
Hopf H. Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives. Weinheim: Wiley-VCH; 2000. pp. 323–330.
Katz TJ. Syntheses of functionalized and aggregating helical conjugated molecules. Angew Chem Int Ed. 2000;39:1921–1923. PubMed
Newman MS, Lednicer D. The synthesis and resolution of hexahelicene. J Am Chem Soc. 1956;78:4765–4770.
Martin RH, Baes M. Helicenes – Photosyntheses of [11]helicene, [12]helicene and [14]helicene. Tetrahedron. 1975;31:2135–2137.
Yamada KI, Ogashiwa S, Tanaka H, Nakagawa H, Kawazura H. [7], [9], [11], [13], and [15]Heterohelicenes annelated with alternant thiophene and benzene rings. Syntheses and NMR studies. Chem Lett. 1981:343–346.
Han S, et al. Total syntheses of angular [7]-, [8]-, and [9]phenylene by triple cobalt-catalyzed cycloisomerization: Remarkably flexible heliphenes. Angew Chem Int Ed. 2002;41:3227–3230. PubMed
Miyasaka M, Rajca A, Pink M, Rajca S. Cross-conjugated oligothiophenes derived from the (C2S)n helix: Asymmetric synthesis and structure of carbon-sulfur [11]helicene. J Am Chem Soc. 2005;127:13806–13807. PubMed
Sudhakar A, Katz TJ, Yang BW. Synthesis of a helical metallocene oligomer. J Am Chem Soc. 1986;108:2790–2791.
Dai Y, Katz TJ, Nichols DA. Synthesis of a helical conjugated ladder polymer. Angew Chem Int Ed. 1996;35:2109–2111.
Wang DZ, Katz TJ, Golen J, Rheingold AL. Diels-Alder additions of benzynes within helicene skeletons. J Org Chem. 2004;69:7769–7771. PubMed
Lovinger AJ, Nuckolls C, Katz TJ. Structure and morphology of helicene fibers. J Am Chem Soc. 1998;120:264–268.
Hecht S, Huc I, editors. Foldamers: Structure, Properties, and Applications. Weinheim: Wiley-VCH; 2007.
Piguet C, Bernardinelli G, Hopfgartner G. Helicates as versatile supramolecular complexes. Chem Rev. 1997;97:2005–2062. PubMed
Lu J, et al. Synthesis, structure, and resolution of exceptionally twisted pentacenes. J Am Chem Soc. 2006;128:17043–17050. PubMed
Stará IG, et al. A novel strategy for the synthesis of molecules with helical chirality. Intramolecular [2 + 2 + 2] cycloisomerization of triynes under cobalt catalysis. J Org Chem. 1998;63:4046–4050.
Teplý F, et al. Synthesis of [5]-, [6]-, and [7]helicene via Ni(0)- or Co(I)-catalyzed isomerization of aromatic cis,cis-dienetriynes. J Am Chem Soc. 2002;124:9175–9180. PubMed
Teplý F, et al. Synthesis of 3-hexahelicenol and its transformation to 3-hexahelicenyl amines, diphenylphosphine, methyl carboxylate, and dimethylthiocarbamate. J Org Chem. 2003;68:5193–5197. PubMed
Sehnal P, et al. On the origin of diastereoselectivity in [2 + 2 + 2] cycloisomerization of chiral triynes: Controlling helicity of helicene-like compounds by thermodynamic factors. J Org Chem. 2008;73:2074–2082. PubMed
Míšek J, et al. A straightforward route to helically chiral N-heteroaromatic compounds: Practical synthesis of racemic 1,14-diaza[5]helicene and optically pure 1-and 2-aza[6]helicenes. Angew Chem Int Ed. 2008;47:3188–3191. PubMed
Jouvenot D, Glazer EC, Tor Y. Photodimerizable ditopic ligand. Org Lett. 2006;8:1987–1990. PubMed PMC
Stará IG, et al. Asymmetric synthesis of [7]helicene-like molecules. Org Lett. 2005;7:2547–2550. PubMed
Martin RH, Marchant MJ. Thermal racemization of hepta-, octa- and nonahelicene. Tetrahedron. 1974;30:347–349.
Martin RH, Marchant MJ. Resolution and optical properties ([α]max, ORD, and CD) of hepta-, octa- and nonahelicene. Tetrahedron. 1974;30:343–345.
Fasel R, Parschau M, Ernst KH. Chirality transfer from single molecules into self-assembled monolayers. Angew Chem Int Ed. 2003;42:5178–5181. PubMed
Taniguchi M, Nakagawa H, Yamagishi A, Yamada K. STM observation of molecular chirality and alignment on solid surface. J Mol Cat A: Chem. 2003;199:65–71.
Fasel R, Parschau M, Ernst KH. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature. 2006;439:449–452. PubMed
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. PubMed
Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–3100. PubMed
Lee CT, Yang WT, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B. 1988;37:785–789. PubMed
Becke AD. Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force fields. J Phys Chem. 1994;98:11623–11627.
Klamt A, Schuurmann G. Cosmo – A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc-Perkin Trans. 1993;2:799–805.
Schäfer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F. COSMO implementation in TURBOMOLE: Extension of an efficient quantum chemical code towards liquid systems. Phys Chem Chem Phys. 2000;2:2187–2193.
Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C. Electronic-structure calculations on workstation computers – The program system Turbomole. Chem Phys Lett. 1989;162:165–169.
Frisch MJ, et al. Wallingford CT: Gaussian, Inc.; 2004. Gaussian 03, Revision C. 02.
Grimme S. Accurate description of van der waals complexes by density functional theory including empirical corrections. J Comput Chem. 2004;25:1463–1473. PubMed
Grimme S. Semiempirical ggc-type density functional constructed with a long-range dispersion contribution. J Comput Chem. 2006;27:1787–1799. PubMed
Goryl G, Boelling O, Godlewski S, Such B, Szymonski M. Low temperature InSb(001) surface structure studied by scanning tunneling microscopy. Surf Sci. 2007;601:3605–3610.
Cyclotrimerization Approach to Symmetric [9]Helical Indenofluorenes: Diverting Cyclization Pathways