Bioinformatics characterization of potential new beta-glucuronidase from Streptococcus equi subsp. zooepidemicus

. 2010 Mar ; 44 (3) : 232-41.

Jazyk angličtina Země Švýcarsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid20077037

Recently, the gene coding for a new beta-glucuronidase enzyme has been identified and cloned from Streptococcus equi subsp. zooepidemicus. This is another report of a beta-glucuronidase gene cloned from bacterial species. The ORF Finder analysis of a sequenced DNA (EMBL, AJ890474) revealed a presence of 1,785 bp large ORF potentially coding for a 594 aa protein. Three protein families in (Pfam) domains were identified using the Conserved Domain Database (CDD) analysis: Pfam 02836, glycosyl hydrolases family 2, triose phosphate isomerase (TIM) barrel domain; Pfam 02837, glycosyl hydrolases family 2, sugar binding domain; and Pfam 00703, glycosyl hydrolases family 2, immunoglobulin-like beta-sandwich domain. To gain more insight into the enzymatic activity, the domains were used to generate a bootstrapped unrooted distance tree using ClustalX. The calculated distances for two domains, TIM barrel domain, and sugar-binding domain were comparable and exhibited similarity pattern based on function and thus being in accordance with recently published works confirming beta-glucuronidase activity of the enzyme. The calculated distances and the tree arrangement in the case of centrally positioned immonoglobulin-like beta-sandwich domain were somewhat higher when compared to other two domains but clustering with other beta-glucuronidases was rather clear. Nine proteins, including beta-glucuronidases, beta-galactosidase, and mannosidase were selected for multiple alignment and subsequent distance tree creation.

Zobrazit více v PubMed

J Bacteriol. 1981 Jan;145(1):211-20 PubMed

Biochem J. 1996 Jun 1;316 ( Pt 2):695-6 PubMed

J Mol Biol. 2005 Oct 21;353(2):282-94 PubMed

FEBS Lett. 2003 Jun 5;544(1-3):103-11 PubMed

Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed

Biochem J. 1993 Aug 1;293 ( Pt 3):781-8 PubMed

J Bacteriol. 1953 Jun;65(6):700-5 PubMed

Appl Microbiol Biotechnol. 2007 Apr;74(5):1016-22 PubMed

Appl Environ Microbiol. 2001 Mar;67(3):1253-61 PubMed

J Mol Biol. 1992 Feb 20;223(4):1177-82 PubMed

Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W20-5 PubMed

Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 PubMed

Equine Vet J. 1989 Sep;21(5):351-3 PubMed

J Biol Chem. 1990 Apr 5;265(10):5512-8 PubMed

Nucleic Acids Res. 2005 Jan 1;33(Database issue):D192-6 PubMed

Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41 PubMed

Protein Sci. 2000 Sep;9(9):1685-99 PubMed

Trends Biochem Sci. 2000 Jun;25(6):300-2 PubMed

Protein Eng. 2001 Nov;14(11):845-55 PubMed

Biol Pharm Bull. 1999 Jan;22(1):80-2 PubMed

J Biol Chem. 1992 Jun 5;267(16):11126-30 PubMed

Biochem J. 1991 Dec 1;280 ( Pt 2):309-16 PubMed

J Bacteriol. 1999 Jun;181(12):3695-704 PubMed

Gene. 2002 Jan 9;282(1-2):33-41 PubMed

Biochimie. 1996;78(5):364-9 PubMed

Proc Natl Acad Sci U S A. 1986 Nov;83(22):8447-51 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...