Long-term adaptation of Bacillus subtilis 168 to extreme pH affects chemical and physical properties of the cellular membrane
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Bacillus subtilis růst a vývoj metabolismus fyziologie MeSH
- buněčná membrána metabolismus fyziologie MeSH
- difenylhexatrien metabolismus MeSH
- fluorescenční polarizace MeSH
- koncentrace vodíkových iontů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- difenylhexatrien MeSH
We characterized physical and chemical properties of cell-membrane fragments from Bacillus subtilis 168 (trpC2) grown at pH 5.0, 7.0 and 8.5. Effects of long-term bacterial adaptation reflected in growth rates and in changes of the membrane lipid composition were correlated with lipid order and dynamics using time-resolved fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. We demonstrate that the pH adaptation results in a modification of a fatty acid content of cellular membranes that significantly influences both the lipid-chain order and dynamics. For cultivation at acidic conditions, the lipid order increases and membrane dynamics decreases compared to pH 7.0. This results in rigid and ordered membranes. Cultivation at pH 8.5 causes slight membrane disordering. Instant pH changes induce qualitatively similar but smaller effects. Proton flux measurements performed on intact cells adapted to both pH 5.0 and 8.5 revealed lower cell-membrane permeability compared to bacteria cultivated at pH optimum. Our results indicate that both acidic and alkalic pH stress represent a permanent challenge for B. subtilis to keep a functional membrane state. The documented adaptation-induced adjustments of membrane properties could be an important part of mechanisms maintaining an optimal intracellular pH at a wide range of extracellular proton concentrations.
Zobrazit více v PubMed
Eur J Biochem. 1976 Aug 16;67(2):357-65 PubMed
Biochim Biophys Acta. 1978 Dec 15;515(4):367-94 PubMed
Appl Environ Microbiol. 1999 Jul;65(7):3048-55 PubMed
Appl Environ Microbiol. 2004 Feb;70(2):929-36 PubMed
FEMS Microbiol Lett. 2004 Sep 15;238(2):291-5 PubMed
Biophys J. 1977 Dec;20(3):289-305 PubMed
Biochim Biophys Acta. 1994 Feb 23;1190(1):1-8 PubMed
Annu Rev Physiol. 1995;57:19-42 PubMed
J Membr Biol. 2000 May 1;175(1):53-62 PubMed
Folia Microbiol (Praha). 1988;33(3):170-7 PubMed
Biophys J. 1984 Jul;46(1):45-56 PubMed
Proc Natl Acad Sci U S A. 1978 Apr;75(4):1616-9 PubMed
Biochim Biophys Acta. 2004 Nov 3;1666(1-2):88-104 PubMed
Mol Microbiol. 2002 May;44(4):889-902 PubMed
J Food Prot. 1999 May;62(5):536-9 PubMed
J Bacteriol. 2004 Oct;186(20):6681-8 PubMed
Biochim Biophys Acta. 2008 Nov-Dec;1781(11-12):665-84 PubMed
Biochim Biophys Acta. 1992 Jun 22;1126(2):119-24 PubMed
Arch Biochem Biophys. 2002 Aug 15;404(2):285-92 PubMed
Microbiol Rev. 1991 Jun;55(2):288-302 PubMed
Methods Enzymol. 1981;72:5-7 PubMed
Biochim Biophys Acta. 1976 Sep 7;443(3):348-59 PubMed
J Bacteriol. 1986 Oct;168(1):334-40 PubMed
Ann N Y Acad Sci. 2004 Apr;1014:164-9 PubMed
J Microbiol Methods. 2003 Feb;52(2):149-82 PubMed
Prog Biophys Mol Biol. 2007 Sep-Nov;95(1-3):60-82 PubMed
Biochim Biophys Acta. 2005 Nov 30;1717(2):118-24 PubMed
Biochim Biophys Acta. 1999 Jun 9;1419(1):97-104 PubMed
Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361-5 PubMed
Biophys J. 1984 Oct;46(4):515-23 PubMed
J Biochem Biophys Methods. 2003 Aug 29;57(2):87-103 PubMed
Prostaglandins Other Lipid Mediat. 2010 Apr;91(3-4):118-29 PubMed
Biochim Biophys Acta. 1980 May 23;598(2):237-46 PubMed
Bacteriol Rev. 1977 Jun;41(2):391-418 PubMed
Extremophiles. 1999 Nov;3(4):253-7 PubMed
Appl Environ Microbiol. 2004 Jun;70(6):3500-5 PubMed
Biophys J. 1980 Jun;30(3):489-506 PubMed
J Food Prot. 2005 Apr;68(4):673-9 PubMed
FEBS Lett. 1990 Oct 1;271(1-2):165-8 PubMed