Changes in the proteomes of the hemocytes and fat bodies of the flesh fly Sarcophaga bullata larvae after infection by Escherichia coli
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
20142993
PubMed Central
PMC2817646
DOI
10.1186/1477-5956-8-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Insects have an efficient self-defense system that is based on innate immunity. Recent findings have disclosed many parallels between human and insect innate immunity, and simultaneously fine differences in the processes between various species have been revealed. Studies on the immune systems of various insect species may uncover the differences in their host defense strategies. RESULTS: We analyzed the proteomes of the hemocytes and fat bodies of Sarcophaga bullata larvae after infection by Escherichia coli. The 2-DE gels of the hemocytes and fat bodies of infected larvae were compared with those of aseptically injured larvae. Our analysis included the construction of protein maps of the hemocyte cells and cells from fat bodies, the identification of the changed proteins, in response to infection, using LC-MS/MS, and the estimation of the trends in expression of these proteins at three time points (30 min, 6 hours and 22 hours) after infection. In total, seven changed spots were found in the hemocytes, and four changed spots were found in the fat bodies. Three types of trends in protein expression were observed. Cofilin and transgelin were undetectable at 30 min after infection but were continuously up-regulated in the induced larvae after 22 hours. A prophenoloxidase isoform and lectin subunit alpha were slightly up-regulated at 30 min after infection, and their protein levels reached the highest points after 6 hours but decreased after 22 hours. T-Complex subunit alpha, GST, ferritin-like protein and an anterior fat body protein (regucalcin homologue) were down-regulated at 22 hours after infection. CONCLUSIONS: Many proteins identified in our study corresponded to the proteins identified in other insects. Compared to the former studies performed in insects, we presented 2-D protein maps of the hemocytes and fat bodies and showed the trends in expression of the immune-elicited proteins.
Zobrazit více v PubMed
Dimarcq JL, Hunneyball I. Pharma-entomology: when bugs become drugs. Drug Discov Today. 2003;8(3):107–110. doi: 10.1016/S1359-6446(02)02582-5. PubMed DOI
Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743. doi: 10.1146/annurev.immunol.25.022106.141615. PubMed DOI
Williams MJ. Drosophila hemopoiesis and cellular immunity. J Immunol. 2007;178(8):4711–4716. PubMed
Marmaras VJ, Lampropoulou M. Regulators and signalling in insect haemocyte immunity. Cell Signal. 2009;21(2):186–195. doi: 10.1016/j.cellsig.2008.08.014. PubMed DOI
Watson FL, Puttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science. 2005;309(5742):1874–1878. doi: 10.1126/science.1116887. PubMed DOI
Riddell C, Adams S, Schmid-Hempel P, Mallon EB. Differential expression of immune defences is associated with specific host-parasite interactions in insects. PLoS One. 2009;4(10):e7621. doi: 10.1371/journal.pone.0007621. PubMed DOI PMC
Freitak D, Wheat CW, Heckel DG, Vogel H. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biol. 2007;5:56. doi: 10.1186/1741-7007-5-56. PubMed DOI PMC
Liu F, Ling EJ, Wu S. Gene expression profiling during early response to injury and microbial challenges in the silkworm, Bombyx mori. Arch Insect Biochem Physiol. 2009;72(1):16–33. doi: 10.1002/arch.20320. PubMed DOI
Mylonakis E, Casadevall A, Ausubel FM. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. Plos Pathogens. 2007;3(7):859–865. doi: 10.1371/journal.ppat.0030101. PubMed DOI PMC
Ragland GJ, Fuller J, Feder JL, Hahn DA. Biphasic metabolic rate trajectory of pupal diapause termination and post-diapause development in a tephritid fly. J Insect Physiol. 2009;55(4):344–350. doi: 10.1016/j.jinsphys.2008.12.013. PubMed DOI
Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SA, Denlinger DL. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci USA. 2007;104(27):11130–11137. doi: 10.1073/pnas.0703538104. PubMed DOI PMC
Wells JD, Stevens JR. Application of DNA-based methods in forensic entomology. Annu Rev Entomol. 2008;53:103–120. doi: 10.1146/annurev.ento.52.110405.091423. PubMed DOI
Natori S, Shiraishi H, Hori S, Kobayashi A. The roles of Sarcophaga defense molecules in immunity and metamorphosis. Dev Comp Immunol. 1999;23(4-5):317–328. doi: 10.1016/S0145-305X(99)00014-2. PubMed DOI
Tanji T, Shiraishi H, Natori S, Ohashi-Kobayashi A. Differential activation of the lectin and antimicrobial peptide genes in Sarcophaga peregrina (the flesh fly) Arch Insect Biochem Physiol. 2008;69(4):189–198. doi: 10.1002/arch.20280. PubMed DOI
Ciencialova A, Neubauerova T, Sanda M, Sindelka R, Cvacka J, Voburka Z, Budesinsky M, Kasicka V, Sazelova P, Solinova V, Mackova M, Koutek B, Jiracek J. Mapping the peptide and protein immune response in the larvae of the fleshfly Sarcophaga bullata. J Pept Sci. 2008;14(6):670–682. doi: 10.1002/psc.967. PubMed DOI
Masova A, Sindelka R, Kubista M, Kindl J, Jiracek J. Gene expression responses in larvae of the fleshfly Sarcophaga bullata after immune stimulation. Folia Biol (Praha) 2009;55(3):98–106. PubMed
Biron DG, Brun C, Lefevre T, Lebarbenchon C, Loxdale HD, Chevenet F, Brizard JP, Thomas F. The pitfalls of proteomics experiments without the correct use of bioinformatics tools. Proteomics. 2006;6(20):5577–5596. doi: 10.1002/pmic.200600223. PubMed DOI
Engstrom Y, Loseva O, Theopold U. Proteomics of the Drosophila immune response. Trends Biotechnol. 2004;22(11):600–605. doi: 10.1016/j.tibtech.2004.09.002. PubMed DOI
Vierstraete E, Verleyen P, Baggerman G, D'Hertog W, Bergh G Van den, Arckens L, De Loof A, Schoofs L. A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph. Proc Natl Acad Sci USA. 2004;101(2):470–475. doi: 10.1073/pnas.0304567101. PubMed DOI PMC
Levy F, Bulet P, Ehret-Sabatier L. Proteomic analysis of the systemic immune response of Drosophila. Mol Cell Proteomics. 2004;3(2):156–166. PubMed
Song KH, Jung SJ, Seo YR, Kang SW, Han SS. Identification of up-regulated proteins in the hemolymph of immunized Bombyx mori larvae. Comp Biochem Physiol D-Genomics Proteomics. 2006;1(2):260–266. doi: 10.1016/j.cbd.2006.01.001. PubMed DOI
Wang YQ, Zhang PB, Fujii H, Banno Y, Yamamoto K, Aso Y. Proteomic studies of lipopolysaccharide-induced polypeptides in the silkworm, Bombyx mori. Biosci Biotechnol Biochem. 2004;68(8):1821–1823. doi: 10.1271/bbb.68.1821. PubMed DOI
Biron DG, Agnew P, Marche L, Renault L, Sidobre C, Michalakis Y. Proteorne of Aedes aegypti larvae in response to infection by the intracellular parasite Vavraia culicis. Int J Parasitol. 2005;35(13):1385–1397. doi: 10.1016/j.ijpara.2005.05.015. PubMed DOI
Randolt K, Gimple O, Geissendorfer J, Reinders J, Prusko C, Mueller MJ, Albert S, Tautz J, Beier H. Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Arch Insect Biochem Physiol. 2008;69(4):155–167. doi: 10.1002/arch.20269. PubMed DOI
Furusawa T, Rakwal R, Nam HW, Hirano M, Shibato J, Kim YS, Ogawa Y, Yoshida Y, Kramer KJ, Kouzuma Y, Agrawal GK, Yonekura M. Systematic investigation of the hemolymph proteome of Manduca sexta at the fifth instar larvae stage using one- and two-dimensional proteomics platforms. J Proteome Res. 2008;7(3):938–959. doi: 10.1021/pr070405j. PubMed DOI
Loseva O, Engstrom Y. Analysis of signal-dependent changes in the proteome of Drosophila blood cells during an immune response. Mol Cell Proteomics. 2004;3(8):796–808. doi: 10.1074/mcp.M400028-MCP200. PubMed DOI
Burmester T, Scheller K. Ligands and receptors: common theme in insect storage protein transport. Naturwissenschaften. 1999;86(10):468–474. doi: 10.1007/s001140050656. PubMed DOI
Spiess C, Meyer AS, Reissmann S, Frydman J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 2004;14(11):598–604. doi: 10.1016/j.tcb.2004.09.015. PubMed DOI PMC
Tang HP. Regulation and function of the melanization reaction in Drosophila. Fly. 2009;3(1):105–111. PubMed
Cerenius L, Soderhall K. The prophenoloxidase-activating system in invertebrates. Immunol Rev. 2004;198(1):116–126. doi: 10.1111/j.0105-2896.2004.00116.x. PubMed DOI
Karlsson C, Korayem AM, Scherfer C, Loseva O, Dushay MS, Theopold U. Proteomic analysis of the Drosophila larval hemolymph clot. J Biol Chem. 2004;279(50):52033–52041. doi: 10.1074/jbc.M408220200. PubMed DOI
Wertheim B, Kraaijeveld AR, Schuster E, Blanc E, Hopkins M, Pletcher SD, Strand MR, Partridge L, Godfray HCJ. Genome-wide gene expression in response to parasitoid attack in Drosophila. Genome Biol. 2005;6(11):R94. doi: 10.1186/gb-2005-6-11-r94. PubMed DOI PMC
Li JS, Kim SR, Christensen BM, Li JY. Purification and primary structural characterization of prophenoloxidases from Aedes aegypti larvae. Insect Biochem Mol Biol. 2005;35(11):1269–1283. doi: 10.1016/j.ibmb.2005.07.001. PubMed DOI
Takase H, Watanabe A, Yoshizawa Y, Kitami M, Sato R. Identification and comparative analysis of three novel C-type lectins from the silkworm with functional implications in pathogen recognition. Dev Comp Immunol. 2009;33(6):789–800. doi: 10.1016/j.dci.2009.01.005. PubMed DOI
Ao JQ, Ling EJ, Yu XQ. Drosophila C-type lectins enhance cellular encapsulation. Mol Immunol. 2007;44(10):2541–2548. doi: 10.1016/j.molimm.2006.12.024. PubMed DOI PMC
Liu Y, Liu HH, Liu SM, Wang S, Jiang RJ, Li S. Hormonal and nutritional regulation of insect fat body development and function. Arch Insect Biochem Physiol. 2009;71(1):16–30. doi: 10.1002/arch.20290. PubMed DOI
Shih KM, Fallon AM. Two-dimensional electrophoretic analysis of Aedes aegypti mosquito fat body proteins during a gonotropic cycle. Am J Trop Med Hyg. 2001;65(1):42–46. PubMed
Zhao XF, He HJ, Dong DJ, Wang JX. Identification of differentially expressed proteins during larval molting of Helicoverpa armigera. J Proteome Res. 2006;5(1):164–169. doi: 10.1021/pr0502424. PubMed DOI
Zhou ZH, Yang HJ, Chen M, Lou CF, Zhang YZ, Chen KP, Wang Y, Yu ML, Yu F, Li HY, Zhong BX. Comparative proteomic analysis between the domesticated silkworm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet. J Proteome Res. 2008;7(12):5103–5111. doi: 10.1021/pr800383r. PubMed DOI
Ellington WR. Evolution and physiological roles of phosphagen systems. Annu Rev Physiol. 2001;63:289–325. doi: 10.1146/annurev.physiol.63.1.289. PubMed DOI
Luka Z, Mudd SH, Wagner C. Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. J Biol Chem. 2009;284(34):22507–22511. doi: 10.1074/jbc.R109.019273. PubMed DOI PMC
Nakajima Y, Natori S. Identification and characterization of an anterior fat body protein in an insect. J Biochem. 2000;127(5):901–908. PubMed
Koorts AM, Viljoen M. Ferritin and ferritin isoforms II: protection against uncontrolled cellular proliferation, oxidative damage and inflammatory processes. Arch Physiol Biochem. 2007;113(2):55–64. doi: 10.1080/13813450701422575. PubMed DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Rabilloud T. A comparison between low background silver diammine and silver-nitrate protein stains. Electrophoresis. 1992;13(7):429–439. doi: 10.1002/elps.1150130190. PubMed DOI
Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 2004;25(9):1327–1333. doi: 10.1002/elps.200305844. PubMed DOI
Selicharova I, Sanda M, Mladkova J, Ohri SS, Vashishta A, Fusek M, Jiracek J, Vetvicka V. 2-DE analysis of breast cancer cell lines 1833 and 4175 with distinct metastatic organ-specific potentials: comparison with parental cell line MDA-MB-231. Oncol Rep. 2008;19(5):1237–1244. PubMed