Numerical modelling of microRNA-mediated mRNA decay identifies novel mechanism of microRNA controlled mRNA downregulation
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20371515
PubMed Central
PMC2919720
DOI
10.1093/nar/gkq220
PII: gkq220
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- down regulace MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- mikro RNA metabolismus MeSH
- modely genetické * MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- stabilita RNA MeSH
- umlčování genů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH
Post-transcriptional control of mRNA by micro-RNAs (miRNAs) represents an important mechanism of gene regulation. miRNAs act by binding to the 3' untranslated region (3'UTR) of an mRNA, affecting the stability and translation of the target mRNA. Here, we present a numerical model of miRNA-mediated mRNA downregulation and its application to analysis of temporal microarray data of HepG2 cells transfected with miRNA-124a. Using the model our analysis revealed a novel mechanism of mRNA accumulation control by miRNA, predicting that specific mRNAs are controlled in a digital, switch-like manner. Specifically, the contribution of miRNAs to mRNA degradation is switched from maximum to zero in a very short period of time. Such behaviour suggests a model of control in which mRNA is at a certain moment protected from binding of miRNA and further accumulates with a basal rate. Genes associated with this process were identified and parameters of the model for all miRNA-124a affected mRNAs were computed.
Zobrazit více v PubMed
Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 2007;8:93–103. PubMed
Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 2008;9:102–114. PubMed
Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Biol. 2007;8:23–36. PubMed
Chalfie M, Horvitz HR, Sulston JE. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell. 1981;24:59–69. PubMed
Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7:759–764. PubMed
Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer. 2006;6:259–269. PubMed
Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat. Genet. 2008;40:43–50. PubMed PMC
Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet. 2007;8:215–239. PubMed
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. PubMed
Xie ZR, Yang HT, Liu WC, Hwang MJ. The role of microRNA in the delayed negative feedback regulation of gene expression. Biochem. Biophys. Res. Commun. 2007;358:722–726. PubMed
Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 2006;57:19–53. PubMed
Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl Acad. Sci. USA. 2006;103:4034–4039. PubMed PMC
Wakiyama M, Takimoto K, Ohara O, Yokoyama S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 2007;21:1857–1862. PubMed PMC
Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R. MicroRNA silencing through RISC recruitment of eIF6. Nature. 2007;447:823–828. PubMed
Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003;301:336–338. PubMed
Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 2007;17:118–126. PubMed
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004;5:522–531. PubMed
Rajewsky N. microRNA target predictions in animals. Nat. Genet. 2006;38:S8–S13. PubMed
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell. 2007;27:91–105. PubMed PMC
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–798. PubMed
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, et al. Combinatorial microRNA target predictions. Nat. Genet. 2005;37:495–500. PubMed
Levine E, Zhang Z, Kuhlman T, Hwa T. Quantitative characteristics of gene regulation by small RNA. PLoS Biol. 2007;5:e229. PubMed PMC
Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, Biham O, Margalit H. Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol. Syst. Biol. 2007;3:138. PubMed PMC
Khanin R, Vinciotti V. Computational modeling of post-transcriptional gene regulation by microRNAs. J. Comput. Biol. 2008;15:305–316. PubMed
Levine E, Ben Jacob E, Levine H. Target-specific and global effectors in gene regulation by MicroRNA. Biophys. J. 2007;93:L52–54. PubMed PMC
Khanin R, Vinciotti V, Wit E. Reconstructing repressor protein levels from expression of gene targets in Escherichia coli. Proc. Natl Acad. Sci. USA. 2006;103:18592–18596. PubMed PMC
Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res. 2006;34:1646–1652. PubMed PMC
Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20:515–524. PubMed
McAdams HH, Arkin A. Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struc. 1998;27:199–224. PubMed
McAdams HH, Arkin A. It's a noisy business! Genetic regulation at the nanomolar scal. Trends Genet. 1999;15:65–69. PubMed
McAdams HH, Arkin A. Towards a circuit engineering discipline. Curr. Biol. 2000;10:R318–R320. PubMed
Vohradsky J. Neural network model of gene expression. FASEB J. 2001;15:846–854. PubMed
Vohradsky J. Neural model of the genetic network. J. Biol. Chem. 2001;276:36168–36173. PubMed
Vu TT, Vohradsky J. Genexp-a genetic network simulation environment. Bioinformatics. 2002;18:1400–1401. PubMed
Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science. 2008;321:1490–1492. PubMed PMC
Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C, Nagel R, Voorhoeve PM, van Duijse J, Orom UA, et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell. 2007;131:1273–1286. PubMed
Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 2006;125:1111–1124. PubMed