Numerical modelling of microRNA-mediated mRNA decay identifies novel mechanism of microRNA controlled mRNA downregulation

. 2010 Aug ; 38 (14) : 4579-85. [epub] 20100405

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20371515

Post-transcriptional control of mRNA by micro-RNAs (miRNAs) represents an important mechanism of gene regulation. miRNAs act by binding to the 3' untranslated region (3'UTR) of an mRNA, affecting the stability and translation of the target mRNA. Here, we present a numerical model of miRNA-mediated mRNA downregulation and its application to analysis of temporal microarray data of HepG2 cells transfected with miRNA-124a. Using the model our analysis revealed a novel mechanism of mRNA accumulation control by miRNA, predicting that specific mRNAs are controlled in a digital, switch-like manner. Specifically, the contribution of miRNAs to mRNA degradation is switched from maximum to zero in a very short period of time. Such behaviour suggests a model of control in which mRNA is at a certain moment protected from binding of miRNA and further accumulates with a basal rate. Genes associated with this process were identified and parameters of the model for all miRNA-124a affected mRNAs were computed.

Zobrazit více v PubMed

Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 2007;8:93–103. PubMed

Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 2008;9:102–114. PubMed

Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Biol. 2007;8:23–36. PubMed

Chalfie M, Horvitz HR, Sulston JE. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell. 1981;24:59–69. PubMed

Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7:759–764. PubMed

Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer. 2006;6:259–269. PubMed

Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat. Genet. 2008;40:43–50. PubMed PMC

Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet. 2007;8:215–239. PubMed

Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. PubMed

Xie ZR, Yang HT, Liu WC, Hwang MJ. The role of microRNA in the delayed negative feedback regulation of gene expression. Biochem. Biophys. Res. Commun. 2007;358:722–726. PubMed

Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 2006;57:19–53. PubMed

Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl Acad. Sci. USA. 2006;103:4034–4039. PubMed PMC

Wakiyama M, Takimoto K, Ohara O, Yokoyama S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 2007;21:1857–1862. PubMed PMC

Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R. MicroRNA silencing through RISC recruitment of eIF6. Nature. 2007;447:823–828. PubMed

Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003;301:336–338. PubMed

Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 2007;17:118–126. PubMed

He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004;5:522–531. PubMed

Rajewsky N. microRNA target predictions in animals. Nat. Genet. 2006;38:S8–S13. PubMed

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell. 2007;27:91–105. PubMed PMC

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–798. PubMed

Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, et al. Combinatorial microRNA target predictions. Nat. Genet. 2005;37:495–500. PubMed

Levine E, Zhang Z, Kuhlman T, Hwa T. Quantitative characteristics of gene regulation by small RNA. PLoS Biol. 2007;5:e229. PubMed PMC

Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, Biham O, Margalit H. Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol. Syst. Biol. 2007;3:138. PubMed PMC

Khanin R, Vinciotti V. Computational modeling of post-transcriptional gene regulation by microRNAs. J. Comput. Biol. 2008;15:305–316. PubMed

Levine E, Ben Jacob E, Levine H. Target-specific and global effectors in gene regulation by MicroRNA. Biophys. J. 2007;93:L52–54. PubMed PMC

Khanin R, Vinciotti V, Wit E. Reconstructing repressor protein levels from expression of gene targets in Escherichia coli. Proc. Natl Acad. Sci. USA. 2006;103:18592–18596. PubMed PMC

Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res. 2006;34:1646–1652. PubMed PMC

Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20:515–524. PubMed

McAdams HH, Arkin A. Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struc. 1998;27:199–224. PubMed

McAdams HH, Arkin A. It's a noisy business! Genetic regulation at the nanomolar scal. Trends Genet. 1999;15:65–69. PubMed

McAdams HH, Arkin A. Towards a circuit engineering discipline. Curr. Biol. 2000;10:R318–R320. PubMed

Vohradsky J. Neural network model of gene expression. FASEB J. 2001;15:846–854. PubMed

Vohradsky J. Neural model of the genetic network. J. Biol. Chem. 2001;276:36168–36173. PubMed

Vu TT, Vohradsky J. Genexp-a genetic network simulation environment. Bioinformatics. 2002;18:1400–1401. PubMed

Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science. 2008;321:1490–1492. PubMed PMC

Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C, Nagel R, Voorhoeve PM, van Duijse J, Orom UA, et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell. 2007;131:1273–1286. PubMed

Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 2006;125:1111–1124. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...