Attenuation of vaccinia virus by the expression of human Flt3 ligand
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20504356
PubMed Central
PMC2883979
DOI
10.1186/1743-422x-7-109
PII: 1743-422X-7-109
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- exprese genu * MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- myši MeSH
- replikace viru MeSH
- vakcínie genetika metabolismus virologie MeSH
- virus vakcinie genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flt3 ligand protein MeSH Prohlížeč
- membránové proteiny MeSH
BACKGROUND: Vaccinia virus, one of the best known members of poxvirus family, has a wide host range both in vivo and in vitro. The expression of Flt3 ligand (FL) by recombinant vaccinia virus (rVACV) highly influenced properties of the virus in dependence on the level of expression. RESULTS: High production of FL driven by the strong synthetic promoter decreased the growth of rVACV in macrophage cell line J774.G8 in vitro as well as its multiplication in vivo when inoculated in mice. The inhibition of replication in vivo was mirrored in low levels of antibodies against vaccinia virus (anti-VACV) which nearly approached to the negative serum level in non-infected mice. Strong FL expression changed not only the host range of the recombinant but also the basic protein contents of virions. The major proteins - H3L and D8L - which are responsible for the virus binding to the cells, and 28 K protein that serves as a virulence factor, were changed in the membrane portion of P13-E/L-FL viral particles. The core virion fraction contained multiple larger, uncleaved proteins and a higher amount of cellular proteins compared to the control virus. The overexpression of FL also resulted in its incorporation into the viral core of P13-E/L-FL IMV particles. In contrary to the equimolar ratio of glycosylated and nonglycosylated FL forms found in cells transfected with the expression plasmid, the recombinant virus incorporated mainly the smaller, nonglycosylated FL. CONCLUSIONS: It has been shown that the overexpression of the Flt3L gene in VACV results in the attenuation of the virus in vivo.
Zobrazit více v PubMed
Mackett M, Smith GL. Vaccinia Virus Expression Vectors. J Gen Virol. 1986;67:2067–2082. doi: 10.1099/0022-1317-67-10-2067. PubMed DOI
Matthews W, Jordan CT, Wiegand GW, Pardoll D, Lemischka IR. A Receptor Tyrosine Kinase Specific to Hematopoietic Stem and Progenitor Cell-Enriched Populations. Cell. 1991;65:1143–1152. doi: 10.1016/0092-8674(91)90010-V. PubMed DOI
McKenna HJ, de Vries P, Brasel K, Lyman SD, Williams DE. Effect of Flt3 Ligand on the Ex Vivo Expansion of Human CD34+ Hematopoietic Progenitor Cells. Blood. 1995;86:3413–3420. PubMed
Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B, Hollingsworth LT, Picha KS, McKenna HJ, Splett RR. Molecular Cloning of a Ligand for the Flt3/Flk-2 Tyrosine Kinase Receptor: a Proliferative Factor for Primitive Hematopoietic Cells. Cell. 1993;75:1157–1167. doi: 10.1016/0092-8674(93)90325-K. PubMed DOI
Hudak S, Hunte B, Culpepper J, Menon S, Hannum C, Thompson-Snipes L, Rennick D. FLT3/FLK2 Ligand Promotes the Growth of Murine Stem Cells and the Expansion of Colony-Forming Cells and Spleen Colony-Forming Units. Blood. 1995;85:2747–2755. PubMed
Zeigler FC, Bennett BD, Jordan CT, Spencer SD, Baumhueter S, Carroll KJ, Hooley J, Bauer K, Matthews W. Cellular and Molecular Characterization of the Role of the Flk-2/Flt-3 Receptor Tyrosine Kinase in Hematopoietic Stem Cells. Blood. 1994;84:2422–2430. PubMed
Rusten LS, Lyman SD, Veiby OP, Jacobsen SE. The FLT3 Ligand Is a Direct and Potent Stimulator of the Growth of Primitive and Committed Human CD34+ Bone Marrow Progenitor Cells in Vitro. Blood. 1996;87:1317–1325. PubMed
Shah AJ, Smogorzewska EM, Hannum C, Crooks GM. Flt3 Ligand Induces Proliferation of Quiescent Human Bone Marrow CD34+ Blood. 1996;87:3563–3570. PubMed
Solanilla A, Grosset C, Duchez P, Legembre P, Pitard V, Dupouy M, Belloc F, Viallard JF, Reiffers J, Boiron JM, Coulombel L, Ripoche J. Flt3-Ligand Induces Adhesion of Haematopoietic Progenitor Cells Via a Very Late Antigen (VLA)-4- and VLA-5-Dependent Mechanism. Br J Haematol. 2003;120:782–786. doi: 10.1046/j.1365-2141.2003.04155.x. PubMed DOI
Brasel K, McKenna HJ, Morrissey PJ, Charrier K, Morris AE, Lee CC, Williams DE, Lyman SD. Hematologic Effects of Flt3 Ligand in Vivo in Mice. Blood. 1996;88:2004–2012. PubMed
Antonysamy MA, Thomson AW. Flt3 Ligand (FL) and Its Influence on Immune Reactivity. Cytokine. 2000;12:87–100. doi: 10.1006/cyto.1999.0540. PubMed DOI
McKenna HJ, Stocking KL, Miller RE, Brasel K, De ST, Maraskovsky E, Maliszewski CR, Lynch DH, Smith J, Pulendran B, Roux ER, Teepe M, Lyman SD, Peschon JJ. Mice Lacking Flt3 Ligand Have Deficient Hematopoiesis Affecting Hematopoietic Progenitor Cells, Dendritic Cells, and Natural Killer Cells. Blood. 2000;95:3489–3497. PubMed
Dravid G, Rao SG. Ex Vivo Expansion of Stem Cells From Umbilical Cord Blood: Expression of Cell Adhesion Molecules. Stem Cells. 2002;20:183–189. doi: 10.1634/stemcells.20-2-183. PubMed DOI
Muench MO, Humeau L, Paek B, Ohkubo T, Lanier LL, Albanese CT, Barcena A. Differential Effects of Interleukin-3, Interleukin-7, Interleukin 15, and Granulocyte-Macrophage Colony-Stimulating Factor in the Generation of Natural Killer and B Cells From Primitive Human Fetal Liver Progenitors. Exp Hematol. 2000;28:961–973. doi: 10.1016/S0301-472X(00)00490-2. PubMed DOI
Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF, Kastelein R, Hudak S, Wagner J, Mattson J. Ligand for FLT3/FLK2 Receptor Tyrosine Kinase Regulates Growth of Haematopoietic Stem Cells and Is Encoded by Variant RNAs. Nature. 1994;368:643–648. doi: 10.1038/368643a0. PubMed DOI
Lyman SD, James L, Zappone J, Sleath PR, Beckmann MP, Bird T. Characterization of the Protein Encoded by the Flt3 (Flk2) Receptor-Like Tyrosine Kinase Gene. Oncogene. 1993;8:815–822. PubMed
Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maliszewski CR. Distinct Dendritic Cell Subsets Differentially Regulate the Class of Immune Response in Vivo. Proc Natl Acad Sci USA. 1999;96:1036–1041. doi: 10.1073/pnas.96.3.1036. PubMed DOI PMC
Mach N, Gillessen S, Wilson SB, Sheehan C, Mihm M, Dranoff G. Differences in Dendritic Cells Stimulated in Vivo by Tumors Engineered to Secrete Granulocyte-Macrophage Colony-Stimulating Factor or Flt3-Ligand. Cancer Res. 2000;60:3239–3246. PubMed
Peron JM, Esche C, Subbotin VM, Maliszewski C, Lotze MT, Shurin MR. FLT3-Ligand Administration Inhibits Liver Metastases: Role of NK Cells. J Immunol. 1998;161:6164–6170. PubMed
Favre-Felix N, Martin M, Maraskovsky E, Fromentin A, Moutet M, Solary E, Martin F, Bonnotte B. Flt3 Ligand Lessens the Growth of Tumors Obtained After Colon Cancer Cell Injection in Rats but Does Not Restore Tumor-Suppressed Dendritic Cell Function. Int J Cancer. 2000;86:827–834. doi: 10.1002/(SICI)1097-0215(20000615)86:6<827::AID-IJC11>3.0.CO;2-R. PubMed DOI
Lyman SD, Brasel K, Rousseau AM, Williams DE. The Flt3 Ligand: a Hematopoietic Stem Cell Factor Whose Activities Are Distinct From Steel Factor. Stem Cells. 1994;12(Suppl 1):99–107. PubMed
Lyman SD, James L, Johnson L, Brasel K, de Vries P, Escobar SS, Downey H, Splett RR, Beckmann MP, McKenna HJ. Cloning of the Human Homologue of the Murine Flt3 Ligand: a Growth Factor for Early Hematopoietic Progenitor Cells. Blood. 1994;83:2795–2801. PubMed
Lyman SD, James L, Escobar S, Downey H, de Vries P, Brasel K, Stocking K, Beckmann MP, Copeland NG, Cleveland LS. Identification of Soluble and Membrane-Bound Isoforms of the Murine Flt3 Ligand Generated by Alternative Splicing of MRNAs. Oncogene. 1995;10:149–157. PubMed
McClanahan T, Culpepper J, Campbell D, Wagner J, Franz-Bacon K, Mattson J, Tsai S, Luh J, Guimaraes MJ, Mattei MG, Rosnet O, Birnbaum D, Hannum CH. Biochemical and Genetic Characterization of Multiple Splice Variants of the Flt3 Ligand. Blood. 1996;88:3371–3382. PubMed
Savvides SN, Boone T, Andrew KP. Flt3 Ligand Structure and Unexpected Commonalities of Helical Bundles and Cystine Knots. Nat Struct Biol. 2000;7:486–491. doi: 10.1038/75896. PubMed DOI
Lu CM, Yu JF, Huang WD, Zhou X, Zhang WY, Xi H, Zhang XG. Increasing Bioactivity of Flt3 Ligand by Fusing Two Identical Soluble Domains. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2002;34:697–702. PubMed
Rozwarski DA, Gronenborn AM, Clore GM, Bazan JF, Bohm A, Wlodawer A, Hatada M, Karplus PA. Structural Comparisons Among the Short-Chain Helical Cytokines. Structure. 1994;2:159–173. doi: 10.1016/S0969-2126(00)00018-6. PubMed DOI
Lyman SD, Stocking K, Davison B, Fletcher F, Johnson L, Escobar S. Structural Analysis of Human and Murine Flt3 Ligand Genomic Loci. Oncogene. 1995;11:1165–1172. PubMed
Taddie JA, Traktman P. Genetic Characterization of the Vaccinia Virus DNA Polymerase: Cytosine Arabinoside Resistance Requires a Variable Lesion Conferring Phosphonoacetate Resistance in Conjunction With an Invariant Mutation Localized to the 3'-5' Exonuclease Domain. J Virol. 1993;67:4323–4336. PubMed PMC
Solheim JC, Reber AJ, Ashour AE, Robinson S, Futakuchi M, Kurz SG, Hood K, Fields RR, Shafer LR, Cornell D, Sutjipto S, Zurawski S, LaFace DM, Singh RK, Talmadge JE. Spleen but Not Tumor Infiltration by Dendritic and T Cells Is Increased by Intravenous Adenovirus-Flt3 Ligand Injection. Cancer Gene Ther. 2007;14:364–371. doi: 10.1038/sj.cgt.7701018. PubMed DOI
Rosel JL, Earl PL, Weir JP, Moss B. Conserved TAAATG Sequence at the Transcriptional and Translational Initiation Sites of Vaccinia Virus Late Genes Deduced by Structural and Functional Analysis of the HindIII H Genome Fragment. J Virol. 1986;60:436–449. PubMed PMC
Chakrabarti S, Sisler JR, Moss B. Compact, Synthetic, Vaccinia Virus Early/Late Promoter for Protein Expression. Biotechniques. 1997;23:1094–1097. PubMed
Zurkova K, Babiarova K, Hainz P, Krystofova J, Kutinova L, Otahal P, Nemeckova S. The Expression of the Soluble Isoform of HFlt3 Ligand by Recombinant Vaccinia Virus Enhances Immunogenicity of the Vector. Oncol Rep. 2009;21:1335–1343. PubMed
Coupar BE, Oke PG, Andrew ME. Insertion Sites for Recombinant Vaccinia Virus Construction: Effects on Expression of a Foreign Protein. J Gen Virol. 2000;81(Pt 2):431–439. 81 Pt 2:431 -92000. PubMed
Flexner C, Hugin A, Moss B. Prevention of Vaccinia Virus Infection in Immunodeficient Mice by Vector-Directed IL-2 Expression. Nature. 1987;330:259–262. doi: 10.1038/330259a0. PubMed DOI
Nemeckova S, Sroller V, Hainz P, Krystofova J, Smahel M, Kutinova L. Experimental Therapy of HPV16 Induced Tumors With IL12 Expressed by Recombinant Vaccinia Virus in Mice. Int J Mol Med. 2003;12:789–796. PubMed
Perera LP, Goldman CK, Waldmann TA. Comparative Assessment of Virulence of Recombinant Vaccinia Viruses Expressing IL-2 and IL-15 in Immunodeficient Mice. Proc Natl Acad Sci USA. 2001;98:5146–5151. doi: 10.1073/pnas.081080298. PubMed DOI PMC
Natuk RJ, Holowczak JA. Vaccinia Virus Proteins on the Plasma Membrane of Infected Cells. III. Infection of Peritoneal Macrophages. Virology. 1985;147:354–372. doi: 10.1016/0042-6822(85)90138-2. PubMed DOI
McLaren C, Cheng H, Spicer DL, Tompkins WA. Lymphocyte and Macrophage Responses After Vaccinia Virus Infections. Infect Immun. 1976;14:1014–1021. PubMed PMC
Drillien R, Spehner D, Bohbot A, Hanau D. Vaccinia Virus-Related Events and Phenotypic Changes After Infection of Dendritic Cells Derived From Human Monocytes. Virology. 2000;268:471–481. doi: 10.1006/viro.2000.0203. PubMed DOI
Jahrling PB, Hensley LE, Martinez MJ, Leduc JW, Rubins KH, Relman DA, Huggins JW. Exploring the Potential of Variola Virus Infection of Cynomolgus Macaques As a Model for Human Smallpox. Proc Natl Acad Sci USA. 2004;101:15196–15200. doi: 10.1073/pnas.0405954101. PubMed DOI PMC
McCraith S, Holtzman T, Moss B, Fields S. Genome-Wide Analysis of Vaccinia Virus Protein-Protein Interactions. Proc Natl Acad Sci USA. 2000;97(9):4879–4884. doi: 10.1073/pnas.080078197. PubMed DOI PMC
Morgan C. Vaccinia Virus Reexamined: Development and Release. Virology. 1976;73:43–58. doi: 10.1016/0042-6822(76)90059-3. PubMed DOI
Morrison DK, Moyer RW. Detection of a Subunit of Cellular Pol II Within Highly Purified Preparations of RNA Polymerase Isolated From Rabbit Poxvirus Virions. Cell. 1986;44:587–596. doi: 10.1016/0092-8674(86)90268-0. PubMed DOI
Bereta M, Bereta J, Park J, Medina F, Kwak H, Kaufman HL. Immune Properties of Recombinant Vaccinia Virus Encoding CD154 (CD40L) Are Determined by Expression of Virally Encoded CD40L and the Presence of CD40L Protein in Viral Particles. Cancer Gene Ther. 2004;11:808–818. doi: 10.1038/sj.cgt.7700762. PubMed DOI
Franke CA, Hruby DE. Association of Non-Viral Proteins With Recombinant Vaccinia Virus Virions. Arch Virol. 1987;94:347–351. doi: 10.1007/BF01310729. PubMed DOI
Gomez CE, Esteban M. Recombinant Proteins Produced by Vaccinia Virus Vectors Can Be Incorporated Within the Virion (IMV Form) into Different Compartments. Arch Virol. 2001;146:875–892. doi: 10.1007/s007050170122. PubMed DOI
Husain M, Weisberg AS, Moss B. Sequence-Independent Targeting of Transmembrane Proteins Synthesized Within Vaccinia Virus Factories to Nascent Viral Membranes. J Virol. 2007;81:2646–2655. doi: 10.1128/JVI.02631-06. PubMed DOI PMC
Mercer J, Traktman P. Investigation of Structural and Functional Motifs Within the Vaccinia Virus A14 Phosphoprotein, an Essential Component of the Virion Membrane. J Virol. 2003;77:8857–8871. doi: 10.1128/JVI.77.16.8857-8871.2003. PubMed DOI PMC
Takahashi T, Oie M, Ichihashi Y. N-Terminal Amino Acid Sequences of Vaccinia Virus Structural Proteins. Virology. 1994;202:844–852. doi: 10.1006/viro.1994.1406. PubMed DOI
da Fonseca FG, Wolffe EJ, Weisberg A, Moss B. Characterization of the Vaccinia Virus H3L Envelope Protein: Topology and Posttranslational Membrane Insertion Via the C-Terminal Hydrophobic Tail. J Virol. 2000;74(16):7508–7517. doi: 10.1128/JVI.74.16.7508-7517.2000. 7508-172000. PubMed DOI PMC
da Fonseca FG, Wolffe EJ, Weisberg A, Moss B. Effects of Deletion or Stringent Repression of the H3L Envelope Gene on Vaccinia Virus Replication. J Virol. 2000;74(16):7518–7528. doi: 10.1128/JVI.74.16.7518-7528.2000. 7518-282000. PubMed DOI PMC
Hsiao JC, Chung CS, Chang W. Vaccinia Virus Envelope D8L Protein Binds to Cell Surface Chondroitin Sulfate and Mediates the Adsorption of Intracellular Mature Virions to Cells. J Virol. 1999;73:8750–8761. PubMed PMC
Niles EG, Seto J. Vaccinia Virus Gene D8 Encodes a Virion Transmembrane Protein. J Virol. 1988;62:3772–3778. PubMed PMC
Weir JP, Moss B. Use of a Bacterial Expression Vector to Identify the Gene Encoding a Major Core Protein of Vaccinia Virus. J Virol. 1985;56:534–540. PubMed PMC
Wilcock D, Smith GL. Vaccinia Virions Lacking Core Protein VP8 Are Deficient in Early Transcription. J Virol. 1996;70:934–943. PubMed PMC
Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, Chang W. Vaccinia Virus Proteome: Identification of Proteins in Vaccinia Virus Intracellular Mature Virion Particles. J Virol. 2006;80:2127–2140. doi: 10.1128/JVI.80.5.2127-2140.2006. PubMed DOI PMC
Ott DE, Coren LV, Chertova EN, Gagliardi TD, Schubert U. Ubiquitination of HIV-1 and MuLV Gag. Virology. 2000;278:111–121. doi: 10.1006/viro.2000.0648. PubMed DOI
Mejean C, Pons F, Benyamin Y, Roustan C. Antigenic Probes Locate Binding Sites for the Glycolytic Enzymes Glyceraldehyde-3-Phosphate Dehydrogenase, Aldolase and Phosphofructokinase on the Actin Monomer in Microfilaments. Biochem J. 1989;264:671–677. PubMed PMC
Smahel M, Sima P, Ludvikova V, Vonka V. Modified HPV16 E7 Genes As DNA Vaccine Against E7-Containing Oncogenic Cells. Virology. 2001;281:231–238. doi: 10.1006/viro.2000.0794. PubMed DOI
Mackett M, Smith GL, Moss B. General Method for Production and Selection of Infectious Vaccinia Virus Recombinants Expressing Foreign Genes. J Virol. 1984;49:857–864. PubMed PMC
Patel AH, Gaffney DF, Subak-Sharpe JH, Stow ND. DNA Sequence of the Gene Encoding a Major Secreted Protein of Vaccinia Virus, Strain Lister. J Gen Virol. 1990;71(Pt 9):2013–2021. doi: 10.1099/0022-1317-71-9-2013. PubMed DOI
Kutinova L, Nemeckova S, Ludvikova V, Kunke D, Otavova M, Vonka V. Nektere Problemy Vyvoje Vakcin Zalozenych Na Rekombinantnim Viru Vakcinie. [Problems Associated With the Development of Vaccines Based on Recombinant Vaccinia Virus] Cas Lek Cesk. 1992;131:770–773. PubMed
Nemeckova S, Stranska R, Subrtova J, Kutinova L, Otahal P, Hainz P, Maresova L, Sroller V, Hamsikova E, Vonka V. Immune Response to E7 Protein of Human Papillomavirus Type 16 Anchored on the Cell Surface. Cancer Immunol Immunother. 2002;51:111–119. doi: 10.1007/s00262-001-0261-3. PubMed DOI PMC
Kutinova L, Ludvikova V, Simonova V, Otavova M, Krystofova J, Hainz P, Press M, Kunke D, Vonka V. Search for Optimal Parent for Recombinant Vaccinia Virus Vaccines. Study of Three Vaccinia Virus Vaccinal Strains and Several Virus Lines Derived From Them. Vaccine. 1995;13:487–493. doi: 10.1016/0264-410X(94)00019-J. PubMed DOI
Joklik WK. The Purification Fo Four Strains of Poxvirus. Virology. 1962;18:9–18. doi: 10.1016/0042-6822(62)90172-1. PubMed DOI
Castro AP, Carvalho TM, Moussatche N, Damaso CR. Redistribution of Cyclophilin A to Viral Factories During Vaccinia Virus Infection and Its Incorporation into Mature Particles. J Virol. 2003;77:9052–9068. doi: 10.1128/JVI.77.16.9052-9068.2003. PubMed DOI PMC
Michl J. Metabolism of Cells in Tissue Culture in Vitro. I. The Influence of Serum Protein Fractions on the Growth of Normal and Neoplastic Cells. Exp Cell Res. 1961;23:324–334. doi: 10.1016/0014-4827(61)90042-8. PubMed DOI
DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP. Analysis of Mutation in Human Cells by Using an Epstein-Barr Virus Shuttle System. Mol Cell Biol. 1987;7:379–387. PubMed PMC
Hamsikova E, Zavadova H, Kutinova L, Ludvikova V, Krchnak V, Nemeckova S, Vonka V. Priming Effect of Recombinant Vaccinia Virus Coding for the Middle Hepatitis B Surface Antigen. Arch Virol. 1990;113:283–289. doi: 10.1007/BF01316681. PubMed DOI
Laemmli UK. Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Zubay G, Morse DE, Schrenk WJ, Miller JH. Detection and Isolation of the Repressor Protein for the Tryptophan Operon of Escherichia Coli. Proc Natl Acad Sci USA. 1972;69:1100–1103. doi: 10.1073/pnas.69.5.1100. PubMed DOI PMC
Yang WP, Kao SY, Bauer WR. Biosynthesis and Post-Translational Cleavage of Vaccinia Virus Structural Protein VP8. Virology. 1988;167:585–590. PubMed
Goebel SJ, Johnson GP, Perkus ME, Davis SW, Winslow JP, Paoletti E. The Complete DNA Sequence of Vaccinia Virus. Virology. 1990;179:247–66. doi: 10.1016/0042-6822(90)90294-2. PubMed DOI