Switching p53-dependent growth arrest to apoptosis via the inhibition of DNA damage-activated kinases
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
20526748
PubMed Central
PMC6275699
DOI
10.2478/s11658-010-0021-5
Knihovny.cz E-resources
- MeSH
- Apoptosis * MeSH
- Ataxia Telangiectasia Mutated Proteins MeSH
- Checkpoint Kinase 2 MeSH
- Cisplatin pharmacology MeSH
- DNA-Binding Proteins antagonists & inhibitors metabolism MeSH
- Down-Regulation MeSH
- Doxorubicin pharmacology MeSH
- Resting Phase, Cell Cycle MeSH
- Protein Kinase Inhibitors pharmacology MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Tumor Suppressor Proteins antagonists & inhibitors metabolism MeSH
- Tumor Suppressor Protein p53 metabolism MeSH
- DNA Damage * MeSH
- Protein Serine-Threonine Kinases antagonists & inhibitors metabolism MeSH
- Cell Cycle Proteins antagonists & inhibitors metabolism MeSH
- Antineoplastic Agents pharmacology MeSH
- Flow Cytometry MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ATM protein, human MeSH Browser
- Ataxia Telangiectasia Mutated Proteins MeSH
- ATR protein, human MeSH Browser
- Checkpoint Kinase 2 MeSH
- CHEK2 protein, human MeSH Browser
- Cisplatin MeSH
- DNA-Binding Proteins MeSH
- Doxorubicin MeSH
- Protein Kinase Inhibitors MeSH
- Tumor Suppressor Proteins MeSH
- Tumor Suppressor Protein p53 MeSH
- Protein Serine-Threonine Kinases MeSH
- Cell Cycle Proteins MeSH
- Antineoplastic Agents MeSH
Cisplatin and doxorubicin are widely used anticancer drugs that cause DNA damage, which activates the ATM-Chk2-p53 pathway in cancer cells. This activation leads to cell cycle block or apoptosis, depending on the nature of the DNA damage. In an attempt to enhance the effects of these agents, we inhibited ATM/ATR and Chk2, which are known upstream regulators of p53. The cancer cell lines A2780 and ARN8, bearing the wild-type p53 protein, were used to study changes in p53 activation and trans-activation. Our results suggest that the G(1)-checkpoint, normally activated by DNA damage, is functionally overcome by the action of kinase inhibitors that sensitize cells to apoptosis. Both inhibitors show these effects, albeit with variable intensity in different cell lines, which is promising for other studies and theoretically for use in clinical practice.
See more in PubMed
Ko L.J., Prives C. p53: puzzle and paradigm. Genes Dev. 1996;10:1054–1072. doi: 10.1101/gad.10.9.1054. PubMed DOI
Levine A.J. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331. doi: 10.1016/S0092-8674(00)81871-1. PubMed DOI
Barak Y., Juven T., Haffner R., Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J. 1993;12:461–468. PubMed PMC
Wu X., Bayle J.H., Olson D., Levine A.J. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 1993;7:1126–1132. doi: 10.1101/gad.7.7a.1126. PubMed DOI
Lane D.P. Cancer. p53, guardian of the genome. Nature. 1992;358:15–16. doi: 10.1038/358015a0. PubMed DOI
Saito S., Goodarzi A.A., Higashimoto Y., Noda Y., Lees-Miller S.P., Appella E., Anderson C.W. ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J. Biol. Chem. 2002;277:12491–12494. doi: 10.1074/jbc.C200093200. PubMed DOI
Siliciano J.D., Canman C.E., Taya Y., Sakaguchi K., Appella E., Kastan M.B. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 1997;11:3471–3481. doi: 10.1101/gad.11.24.3471. PubMed DOI PMC
Bartek J., Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421–429. doi: 10.1016/S1535-6108(03)00110-7. PubMed DOI
Fedier A., Schlamminger M., Schwarz V.A., Haller U., Howell S.B., Fink D. Loss of atm sensitises p53-deficient cells to topoisomerase poisons and antimetabolites. Ann. Oncol. 2003;14:938–945. doi: 10.1093/annonc/mdg240. PubMed DOI
Shiloh Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci. 2006;31:402–410. doi: 10.1016/j.tibs.2006.05.004. PubMed DOI
Canman C.E., Wolff A.C., Chen C.Y., Fornace A.J., Jr., Kastan M.B. The p53-dependent G1 cell cycle checkpoint pathway and ataxiatelangiectasia. Cancer Res. 1994;54:5054–5058. PubMed
Canman C.E., Lim D.S., Cimprich K.A., Taya Y., Tamai K., Sakaguchi K., Appella E., Kastan M.B., Siliciano J.D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–1679. doi: 10.1126/science.281.5383.1677. PubMed DOI
Banin S., Moyal L., Shieh S., Taya Y., Anderson C.W., Chessa L., Smorodinsky N.I., Prives C., Reiss Y., Shiloh Y., Ziv Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–1677. doi: 10.1126/science.281.5383.1674. PubMed DOI
Hirao A., Kong Y.Y., Matsuoka S., Wakeham A., Ruland J., Yoshida H., Liu D., Elledge S.J., Mak T.W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000;287:1824–1827. doi: 10.1126/science.287.5459.1824. PubMed DOI
Lin W.C., Lin F.T., Nevins J.R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 2001;15:1833–1844. PubMed PMC
Muller P., Ceskova P., Vojtesek B. Hsp90 is essential for restoring cellular functions of temperature-sensitive p53 mutant protein but not for stabilization and activation of wild-type p53: implications for cancer therapy. J. Biol. Chem. 2005;280:6682–6691. doi: 10.1074/jbc.M412767200. PubMed DOI
Vojtesek B., Bartek J., Midgley C.A., Lane D.P. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods. 1992;151:237–244. doi: 10.1016/0022-1759(92)90122-A. PubMed DOI
Blaydes J.P., Hupp T.R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene. 1998;17:1045–1052. doi: 10.1038/sj.onc.1202014. PubMed DOI
Chen J., Marechal V., Levine A.J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell Biol. 1993;13:4107–4114. PubMed PMC
Sheard M.A., Krammer P.H., Zaloudik J. Fractionated gamma-irradiation renders tumour cells more responsive to apoptotic signals through CD95. Br. J. Cancer. 1999;80:1689–1696. doi: 10.1038/sj.bjc.6690585. PubMed DOI PMC
Sheard M.A., Vojtesek B., Janakova L., Kovarik J., Zaloudik J. Upregulation of Fas (CD95) in human p53wild-type cancer cells treated with ionizing radiation. Int. J. Cancer. 1997;73:757–762. doi: 10.1002/(SICI)1097-0215(19971127)73:5<757::AID-IJC24>3.0.CO;2-1. PubMed DOI
Wang D., Lippard S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005;4:307–320. doi: 10.1038/nrd1691. PubMed DOI
Siddik Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–7279. doi: 10.1038/sj.onc.1206933. PubMed DOI
Kurz E.U., Douglas P., Lees-Miller S.P. Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J. Biol. Chem. 2004;279:53272–53281. doi: 10.1074/jbc.M406879200. PubMed DOI
McHugh P.J., Spanswick V.J., Hartley J.A. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2001;2:483–490. doi: 10.1016/S1470-2045(01)00454-5. PubMed DOI
Kartalou M., Essigmann J.M. Recognition of cisplatin adducts by cellular proteins. Mutat. Res. 2001;478:1–21. PubMed
Chaney S.G., Campbell S.L., Bassett E., Wu Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev. Oncol. Hematol. 2005;53:3–11. doi: 10.1016/j.critrevonc.2004.08.008. PubMed DOI
Dronkert M.L., Kanaar R. Repair of DNA interstrand cross-links. Mutat. Res. 2001;486:217–247. PubMed
Damia G., Filiberti L., Vikhanskaya F., Carrassa L., Taya Y., D’Incalci M., Broggini M. Cisplatinum and taxol induce different patterns of p53 phosphorylation. Neoplasia. 2001;3:10–16. doi: 10.1038/sj.neo.7900122. PubMed DOI PMC
Khanna K.K., Keating K.E., Kozlov S., Scott S., Gatei M., Hobson K., Taya Y., Gabrielli B., Chan D., Lees-Miller S.P., Lavin M.F. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat. Genet. 1998;20:398–400. doi: 10.1038/3882. PubMed DOI
Lakin N.D., Hann B.C., Jackson S.P. The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene. 1999;18:3989–3995. doi: 10.1038/sj.onc.1202973. PubMed DOI
Tibbetts R.S., Brumbaugh K.M., Williams J.M., Sarkaria J.N., Cliby W.A., Shieh S.Y., Taya Y., Prives C., Abraham R.T. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999;13:152–157. doi: 10.1101/gad.13.2.152. PubMed DOI PMC
Chehab N.H., Malikzay A., Appel M., Halazonetis T.D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 2000;14:278–288. PubMed PMC
Chehab N.H., Malikzay A., Stavridi E.S., Halazonetis T.D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl. Acad. Sci. U. S. A. 1999;96:13777–13782. doi: 10.1073/pnas.96.24.13777. PubMed DOI PMC
Shieh S.Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–334. doi: 10.1016/S0092-8674(00)80416-X. PubMed DOI
Delia D., Fontanella E., Ferrario C., Chessa L., Mizutani S. DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells. Oncogene. 2003;22:7866–7869. doi: 10.1038/sj.onc.1207086. PubMed DOI
Hill R., Bodzak E., Blough M.D., Lee P.W. p53 Binding to the p21 promoter is dependent on the nature of DNA damage. Cell Cycle. 2008;7:2535–2543. PubMed
Noda A., Ning Y., Venable S.F., Pereira-Smith O.M., Smith J.R. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 1994;211:90–98. doi: 10.1006/excr.1994.1063. PubMed DOI
Lu Y., Tatsuka M., Takebe H., Yagi T. Involvement of cyclin-dependent kinases in doxorubicin-induced apoptosis in human tumor cells. Mol. Carcinog. 2000;29:1–7. doi: 10.1002/1098-2744(200009)29:1<1::AID-MC1>3.0.CO;2-A. PubMed DOI
Lu Y., Yamagishi N., Yagi T., Takebe H. Mutated p21(WAF1/CIP1/SDI1) lacking CDK-inhibitory activity fails to prevent apoptosis in human colorectal carcinoma cells. Oncogene. 1998;16:705–712. doi: 10.1038/sj.onc.1201585. PubMed DOI
Luo Y., Hurwitz J., Massague J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature. 1995;375:159–161. doi: 10.1038/375159a0. PubMed DOI
Tang J.J., Shen C., Lu Y.J. Requirement for pre-existing of p21 to prevent doxorubicin-induced apoptosis through inhibition of caspase-3 activation. Mol. Cell Biochem. 2006;291:139–144. doi: 10.1007/s11010-006-9206-7. PubMed DOI
Crescenzi E., Palumbo G., de Boer J., Brady H.J. Ataxia telangiectasia mutated and p21CIP1 modulate cell survival of drug-induced senescent tumor cells: implications for chemotherapy. Clin. Cancer Res. 2008;14:1877–1887. doi: 10.1158/1078-0432.CCR-07-4298. PubMed DOI
AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-mediated regulatory pathway