Switching p53-dependent growth arrest to apoptosis via the inhibition of DNA damage-activated kinases

. 2010 Sep ; 15 (3) : 473-84. [epub] 20100604

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20526748

Cisplatin and doxorubicin are widely used anticancer drugs that cause DNA damage, which activates the ATM-Chk2-p53 pathway in cancer cells. This activation leads to cell cycle block or apoptosis, depending on the nature of the DNA damage. In an attempt to enhance the effects of these agents, we inhibited ATM/ATR and Chk2, which are known upstream regulators of p53. The cancer cell lines A2780 and ARN8, bearing the wild-type p53 protein, were used to study changes in p53 activation and trans-activation. Our results suggest that the G(1)-checkpoint, normally activated by DNA damage, is functionally overcome by the action of kinase inhibitors that sensitize cells to apoptosis. Both inhibitors show these effects, albeit with variable intensity in different cell lines, which is promising for other studies and theoretically for use in clinical practice.

Zobrazit více v PubMed

Ko L.J., Prives C. p53: puzzle and paradigm. Genes Dev. 1996;10:1054–1072. doi: 10.1101/gad.10.9.1054. PubMed DOI

Levine A.J. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331. doi: 10.1016/S0092-8674(00)81871-1. PubMed DOI

Barak Y., Juven T., Haffner R., Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J. 1993;12:461–468. PubMed PMC

Wu X., Bayle J.H., Olson D., Levine A.J. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 1993;7:1126–1132. doi: 10.1101/gad.7.7a.1126. PubMed DOI

Lane D.P. Cancer. p53, guardian of the genome. Nature. 1992;358:15–16. doi: 10.1038/358015a0. PubMed DOI

Saito S., Goodarzi A.A., Higashimoto Y., Noda Y., Lees-Miller S.P., Appella E., Anderson C.W. ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J. Biol. Chem. 2002;277:12491–12494. doi: 10.1074/jbc.C200093200. PubMed DOI

Siliciano J.D., Canman C.E., Taya Y., Sakaguchi K., Appella E., Kastan M.B. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 1997;11:3471–3481. doi: 10.1101/gad.11.24.3471. PubMed DOI PMC

Bartek J., Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421–429. doi: 10.1016/S1535-6108(03)00110-7. PubMed DOI

Fedier A., Schlamminger M., Schwarz V.A., Haller U., Howell S.B., Fink D. Loss of atm sensitises p53-deficient cells to topoisomerase poisons and antimetabolites. Ann. Oncol. 2003;14:938–945. doi: 10.1093/annonc/mdg240. PubMed DOI

Shiloh Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci. 2006;31:402–410. doi: 10.1016/j.tibs.2006.05.004. PubMed DOI

Canman C.E., Wolff A.C., Chen C.Y., Fornace A.J., Jr., Kastan M.B. The p53-dependent G1 cell cycle checkpoint pathway and ataxiatelangiectasia. Cancer Res. 1994;54:5054–5058. PubMed

Canman C.E., Lim D.S., Cimprich K.A., Taya Y., Tamai K., Sakaguchi K., Appella E., Kastan M.B., Siliciano J.D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–1679. doi: 10.1126/science.281.5383.1677. PubMed DOI

Banin S., Moyal L., Shieh S., Taya Y., Anderson C.W., Chessa L., Smorodinsky N.I., Prives C., Reiss Y., Shiloh Y., Ziv Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–1677. doi: 10.1126/science.281.5383.1674. PubMed DOI

Hirao A., Kong Y.Y., Matsuoka S., Wakeham A., Ruland J., Yoshida H., Liu D., Elledge S.J., Mak T.W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000;287:1824–1827. doi: 10.1126/science.287.5459.1824. PubMed DOI

Lin W.C., Lin F.T., Nevins J.R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 2001;15:1833–1844. PubMed PMC

Muller P., Ceskova P., Vojtesek B. Hsp90 is essential for restoring cellular functions of temperature-sensitive p53 mutant protein but not for stabilization and activation of wild-type p53: implications for cancer therapy. J. Biol. Chem. 2005;280:6682–6691. doi: 10.1074/jbc.M412767200. PubMed DOI

Vojtesek B., Bartek J., Midgley C.A., Lane D.P. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods. 1992;151:237–244. doi: 10.1016/0022-1759(92)90122-A. PubMed DOI

Blaydes J.P., Hupp T.R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene. 1998;17:1045–1052. doi: 10.1038/sj.onc.1202014. PubMed DOI

Chen J., Marechal V., Levine A.J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell Biol. 1993;13:4107–4114. PubMed PMC

Sheard M.A., Krammer P.H., Zaloudik J. Fractionated gamma-irradiation renders tumour cells more responsive to apoptotic signals through CD95. Br. J. Cancer. 1999;80:1689–1696. doi: 10.1038/sj.bjc.6690585. PubMed DOI PMC

Sheard M.A., Vojtesek B., Janakova L., Kovarik J., Zaloudik J. Upregulation of Fas (CD95) in human p53wild-type cancer cells treated with ionizing radiation. Int. J. Cancer. 1997;73:757–762. doi: 10.1002/(SICI)1097-0215(19971127)73:5<757::AID-IJC24>3.0.CO;2-1. PubMed DOI

Wang D., Lippard S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005;4:307–320. doi: 10.1038/nrd1691. PubMed DOI

Siddik Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–7279. doi: 10.1038/sj.onc.1206933. PubMed DOI

Kurz E.U., Douglas P., Lees-Miller S.P. Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J. Biol. Chem. 2004;279:53272–53281. doi: 10.1074/jbc.M406879200. PubMed DOI

McHugh P.J., Spanswick V.J., Hartley J.A. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2001;2:483–490. doi: 10.1016/S1470-2045(01)00454-5. PubMed DOI

Kartalou M., Essigmann J.M. Recognition of cisplatin adducts by cellular proteins. Mutat. Res. 2001;478:1–21. PubMed

Chaney S.G., Campbell S.L., Bassett E., Wu Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev. Oncol. Hematol. 2005;53:3–11. doi: 10.1016/j.critrevonc.2004.08.008. PubMed DOI

Dronkert M.L., Kanaar R. Repair of DNA interstrand cross-links. Mutat. Res. 2001;486:217–247. PubMed

Damia G., Filiberti L., Vikhanskaya F., Carrassa L., Taya Y., D’Incalci M., Broggini M. Cisplatinum and taxol induce different patterns of p53 phosphorylation. Neoplasia. 2001;3:10–16. doi: 10.1038/sj.neo.7900122. PubMed DOI PMC

Khanna K.K., Keating K.E., Kozlov S., Scott S., Gatei M., Hobson K., Taya Y., Gabrielli B., Chan D., Lees-Miller S.P., Lavin M.F. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat. Genet. 1998;20:398–400. doi: 10.1038/3882. PubMed DOI

Lakin N.D., Hann B.C., Jackson S.P. The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene. 1999;18:3989–3995. doi: 10.1038/sj.onc.1202973. PubMed DOI

Tibbetts R.S., Brumbaugh K.M., Williams J.M., Sarkaria J.N., Cliby W.A., Shieh S.Y., Taya Y., Prives C., Abraham R.T. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999;13:152–157. doi: 10.1101/gad.13.2.152. PubMed DOI PMC

Chehab N.H., Malikzay A., Appel M., Halazonetis T.D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 2000;14:278–288. PubMed PMC

Chehab N.H., Malikzay A., Stavridi E.S., Halazonetis T.D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl. Acad. Sci. U. S. A. 1999;96:13777–13782. doi: 10.1073/pnas.96.24.13777. PubMed DOI PMC

Shieh S.Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–334. doi: 10.1016/S0092-8674(00)80416-X. PubMed DOI

Delia D., Fontanella E., Ferrario C., Chessa L., Mizutani S. DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells. Oncogene. 2003;22:7866–7869. doi: 10.1038/sj.onc.1207086. PubMed DOI

Hill R., Bodzak E., Blough M.D., Lee P.W. p53 Binding to the p21 promoter is dependent on the nature of DNA damage. Cell Cycle. 2008;7:2535–2543. PubMed

Noda A., Ning Y., Venable S.F., Pereira-Smith O.M., Smith J.R. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 1994;211:90–98. doi: 10.1006/excr.1994.1063. PubMed DOI

Lu Y., Tatsuka M., Takebe H., Yagi T. Involvement of cyclin-dependent kinases in doxorubicin-induced apoptosis in human tumor cells. Mol. Carcinog. 2000;29:1–7. doi: 10.1002/1098-2744(200009)29:1<1::AID-MC1>3.0.CO;2-A. PubMed DOI

Lu Y., Yamagishi N., Yagi T., Takebe H. Mutated p21(WAF1/CIP1/SDI1) lacking CDK-inhibitory activity fails to prevent apoptosis in human colorectal carcinoma cells. Oncogene. 1998;16:705–712. doi: 10.1038/sj.onc.1201585. PubMed DOI

Luo Y., Hurwitz J., Massague J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature. 1995;375:159–161. doi: 10.1038/375159a0. PubMed DOI

Tang J.J., Shen C., Lu Y.J. Requirement for pre-existing of p21 to prevent doxorubicin-induced apoptosis through inhibition of caspase-3 activation. Mol. Cell Biochem. 2006;291:139–144. doi: 10.1007/s11010-006-9206-7. PubMed DOI

Crescenzi E., Palumbo G., de Boer J., Brady H.J. Ataxia telangiectasia mutated and p21CIP1 modulate cell survival of drug-induced senescent tumor cells: implications for chemotherapy. Clin. Cancer Res. 2008;14:1877–1887. doi: 10.1158/1078-0432.CCR-07-4298. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...