Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20581210
PubMed Central
PMC2916416
DOI
10.1128/jb.00384-10
PII: JB.00384-10
Knihovny.cz E-zdroje
- MeSH
- aerobióza MeSH
- anaerobióza MeSH
- Bacillus subtilis metabolismus fyziologie MeSH
- bakteriální proteiny biosyntéza MeSH
- buněčná membrána chemie MeSH
- desaturasy mastných kyselin biosyntéza MeSH
- fluidita membrány MeSH
- fyziologická adaptace * MeSH
- mastné kyseliny metabolismus MeSH
- nízká teplota * MeSH
- regulace genové exprese u bakterií * MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- desaturasy mastných kyselin MeSH
- mastné kyseliny MeSH
Bacillus subtilis, which grows under aerobic conditions, employs fatty acid desaturase (Des) to fluidize its membrane when subjected to temperature downshift. Des requires molecular oxygen for its activity, and its expression is regulated by DesK-DesR, a two-component system. Transcription of des is induced by the temperature downshift and is decreased when membrane fluidity is restored. B. subtilis is also capable of anaerobic growth by nitrate or nitrite respiration. We studied the mechanism of cold adaptation in B. subtilis under anaerobic conditions that were predicted to inhibit Des activity. We found that in anaerobiosis, in contrast to aerobic growth, the induction of des expression after temperature downshift (from 37 degrees C to 25 degrees C) was not downregulated. However, the transfer from anaerobic to aerobic conditions rapidly restored the downregulation. Under both aerobic and anaerobic conditions, the induction of des expression was substantially reduced by the addition of external fluidizing oleic acid and was fully dependent on the DesK-DesR two-component regulatory system. Fatty acid analysis proved that there was no desaturation after des induction under anaerobic conditions despite the presence of high levels of the des protein product, which was shown by immunoblot analysis. The cold adaptation of B. subtilis in anaerobiosis is therefore mediated exclusively by the increased anteiso/iso ratio of branched-chain fatty acids and not by the temporarily increased level of unsaturated fatty acids that is typical under aerobic conditions. The degrees of membrane fluidization, as measured by diphenylhexatriene fluorescence anisotropy, were found to be similar under both aerobic and anaerobic conditions.
Zobrazit více v PubMed
Aguilar, P. S., J. E. Cronan, Jr., and D. de Mendoza. 1998. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J. Bacteriol. 180:2194-2200. PubMed PMC
Aguilar, P. S., A. M. Hernandez-Arriaga, L. E. Cybulski, A. C. Erazo, and D. de Mendoza. 2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 20:1681-1691. PubMed PMC
Albanesi, D., M. C. Mansilla, and D. de Mendoza. 2004. The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J. Bacteriol. 186:2655-2663. PubMed PMC
Altabe, S. G., P. Aguilar, G. M. Caballero, and D. de Mendoza. 2003. The Bacillus subtilis acyl lipid desaturase is a delta5 desaturase. J. Bacteriol. 185:3228-3231. PubMed PMC
Beranova, J., M. Jemiola-Rzeminska, D. Elhottova, K. Strzalka, and I. Konopasek. 2008. Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation. Biochim. Biophys. Acta Biomembr. 1778:445-453. PubMed
Butterworth, P. H., and K. Bloch. 1970. Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli. Eur. J. Biochem. 12:496-501. PubMed
Choi, K. H., R. J. Heath, and C. O. Rock. 2000. Beta-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J. Bacteriol. 182:365-370. PubMed PMC
Cossins, A. R., and M. Sinensky. 1984. Adaptation of membranes to temperature, pressure and exogenous lipids. In M. Shinitzky (ed.), Physiology of membrane fluidity, vol. II. CRC Press Inc., Boca Raton, FL.
Cybulski, L. E., D. Albanesi, M. C. Mansilla, S. Altabe, P. S. Aguilar, and D. de Mendoza. 2002. Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol. Microbiol. 45:1379-1388. PubMed
Debarbouille, M., R. Gardan, M. Arnaud, and G. Rapoport. 1999. Role of BkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J. Bacteriol. 181:2059-2066. PubMed PMC
Diaz, A. R., M. C. Mansilla, A. J. Vila, and D. de Mendoza. 2002. Membrane topology of the acyl-lipid desaturase from Bacillus subtilis. J. Biol. Chem. 277:48099-48106. PubMed
Dubnau, D., and R. Davidoff. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis. J. Mol. Biol. 56:209-221. PubMed
Hoffmann, T., N. Frankenberg, M. Marino, and D. Jahn. 1998. Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE. J. Bacteriol. 180:186-189. PubMed PMC
Kaan, T., G. Homuth, U. Mader, J. Bandow, and T. Schweder. 2002. Genome-wide transcriptional profiling of the Bacillus subtilis cold shock response. Microbiology 148:3441-3455. PubMed
Kaneda, T. 1977. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol. Rev. 41:391-418. PubMed PMC
Klein, W., M. H. W. Weber, and M. A. Marahiel. 1999. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J. Bacteriol. 181:5341-5349. PubMed PMC
Lemon, K. P., and A. D. Grossman. 1998. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282:1516-1519. PubMed
Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
Nakano, M. M., and F. M. Hulett. 1997. Adaptation of Bacillus subtilis to oxygen limitation. FEMS Microbiol. Lett. 157:1-7. PubMed
Nakano, M. M., and P. Zuber. 1998. Anaerobic growth of a “strict aerobe” Bacillus subtilis. Annu. Rev. Microbiol. 52:165-190. PubMed
Nakano, M. M., P. Zuber, P. Glaser, A. Danchin, and F. M. Hulett. 1996. Two-component regulatory proteins ResD-ResE are required for transcriptional activation of fnr upon oxygen limitation in Bacillus subtilis. J. Bacteriol. 178:3796-3802. PubMed PMC
Phillips, R., T. Ursell, P. Wiggins, and P. Sens. 2009. Emerging roles for lipids in shaping membrane-protein function. Nature 459:379-385. PubMed PMC
Reents, H., R. Munch, T. Dammeyer, D. Jahn, and E. Hartig. 2006. The Fnr regulon of Bacillus subtilis. J. Bacteriol. 188:1103-1112. PubMed PMC
Rider, B. F., and M. G. Mellon. 1946. Colorimetric determination of nitrites. Ind. Eng. Chem. Anal. Ed. 18:96-99.
Schujman, G. E., K. H. Choi, S. Altabe, C. O. Rock, and D. de Mendoza. 2001. Response of Bacillus subtilis to cerulenin and acquisition of resistance. J. Bacteriol. 183:3032-3040. PubMed PMC
Sun, G. F., E. Sharkova, R. Chesnut, S. Birkey, M. F. Duggan, A. Sorokin, P. Pujic, S. D. Ehrlich, and F. M. Hulett. 1996. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J. Bacteriol. 178:1374-1385. PubMed PMC
Suutari, M., and S. Laakso. 1992. Unsaturated and branched-chain fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Biochim. Biophys. Acta 1126:119-124. PubMed
Svobodova, J., and P. Svoboda. 1988. Membrane fluidity in Bacillus subtilis—physical change and biological adaptation. Folia Microbiol. 33:161-169. PubMed
Wiegeshoff, F., C. L. Beckering, M. Debarbouille, and M. A. Marahiel. 2006. Sigma L is important for cold shock adaptation of Bacillus subtilis. J. Bacteriol. 188:3130-3133. PubMed PMC
Ye, R. W., W. Tao, L. Bedzyk, T. Young, M. Chen, and L. Li. 2000. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J. Bacteriol. 182:4458-4465. PubMed PMC