Need for new materials, biofunctionalization and non-surgical heart valve technology
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
21160755
PubMed Central
PMC2999027
DOI
10.4330/wjc.v2.i3.50
Knihovny.cz E-zdroje
- Klíčová slova
- Aortic valve, Biomaterials, Heart valve prosthesis, Non-biological materials,
- Publikační typ
- časopisecké články MeSH
Transition from non-surgical heart valve defects repair from bench to bedside is a reality. Some biological material-based designs for transcatheter aortic valve implantation are ready for use. Their drawback, however is their unknown functional as well as structural durability. Moreover, research on new non-biological materials is essential to replace classical animal-derived sources of human heart valve prostheses.
Zobrazit více v PubMed
Sochman J, Peregrin JH. Catheter-based modification of heart valve diseases: from experimental to clinical application. ASAIO J. 2007;53:609–616. PubMed
Bonhoeffer P, Boudjemline Y, Saliba Z, Merckx J, Aggoun Y, Bonnet D, Acar P, Le Bidois J, Sidi D, Kachaner J. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet. 2000;356:1403–1405. PubMed
Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, Derumeaux G, Anselme F, Laborde F, Leon MB. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106:3006–3008. PubMed
Davidson MJ, Baim DS. Percutaneous aortic valve interventions. In: Cohn LH, editor. Cardiac surgery in the adult. 3rd ed. New York: McGraw Hill Medical; 2008. pp. 963–969.
Andersen HR, Knudsen LL, Hasenkam JM. Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs. Eur Heart J. 1992;13:704–708. PubMed
Marchand C, Heim F, Durand B. Heart valve stent for percutaneous implantation: design optimization. J Biomed Mater Res B Appl Biomater. 2010;92:138–148. PubMed
Heim F, Durand B, Chakfe N. Textile for heart valve prostheses: fabric long-term durability testing. J Biomed Mater Res B Appl Biomater. 2010;92:68–77. PubMed
Pinchuk L, Wilson GJ, Barry JJ, Schoephoerster RT, Parel JM, Kennedy JP. Medical applications of poly(styrene-block-isobutylene-block-styrene) ("SIBS") Biomaterials. 2008;29:448–460. PubMed
de Mel A, Punshon G, Ramesh B, Sarkar S, Darbyshire A, Hamilton G, Seifalian AM. In situ endothelialization potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft. Biomed Mater Eng. 2009;19:317–331. PubMed
Nakayama Y, Yamanami M, Yahata Y, Tajikawa T, Ohba K, Watanabe T, Kanda K, Yaku H. Preparation of a completely autologous trileaflet valve-shaped construct by in-body tissue architecture technology. J Biomed Mater Res B Appl Biomater. 2009;91:813–818. PubMed
Zilla P, Brink J, Human P, Bezuidenhout D. Prosthetic heart valves: catering for the few. Biomaterials. 2008;29:385–406. PubMed
Sochman J, Vrbská J, Frídl P, v Vasková, Stanek V, Pavel P, Sedlácek J. Catheter-based fixation of the mitral valve after acute papillary muscle rupture: a new technique for temporary hemodynamic stabilization. Catheter Cardiovasc Interv. 1999;46:446–449. PubMed
Fann JI, St Goar FG, Komtebedde J, Oz MC, Block PC, Foster E, Butany J, Feldman T, Burdon TA. Beating heart catheter-based edge-to-edge mitral valve procedure in a porcine model: efficacy and healing response. Circulation. 2004;110:988–993. PubMed
Brinster DR, Unic D, D'Ambra MN, Nathan N, Cohn LH. Midterm results of the edge-to-edge technique for complex mitral valve repair. Ann Thorac Surg. 2006;81:1612–1617. PubMed