Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10
Status retracted Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Retracted Publication
PubMed
21210990
PubMed Central
PMC3023689
DOI
10.1186/1472-6750-11-2
PII: 1472-6750-11-2
Knihovny.cz E-resources
- MeSH
- Aminohydrolases biosynthesis genetics isolation & purification metabolism MeSH
- Aspergillus niger enzymology genetics MeSH
- Bacterial Proteins genetics isolation & purification metabolism MeSH
- Cloning, Molecular methods MeSH
- DNA, Complementary MeSH
- Molecular Sequence Data MeSH
- Polymerase Chain Reaction MeSH
- Scattering, Radiation MeSH
- Recombinant Proteins genetics isolation & purification metabolism MeSH
- Protein Folding MeSH
- Amino Acid Sequence MeSH
- Sequence Analysis, DNA MeSH
- Sequence Alignment MeSH
- Molecular Dynamics Simulation MeSH
- Enzyme Stability MeSH
- Light MeSH
- Publication type
- Journal Article MeSH
- Retracted Publication MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aminohydrolases MeSH
- Bacterial Proteins MeSH
- DNA, Complementary MeSH
- nitrilase MeSH Browser
- Recombinant Proteins MeSH
BACKGROUND: Nitrilases attract increasing attention due to their utility in the mild hydrolysis of nitriles. According to activity and gene screening, filamentous fungi are a rich source of nitrilases distinct in evolution from their widely examined bacterial counterparts. However, fungal nitrilases have been less explored than the bacterial ones. Nitrilases are typically heterogeneous in their quaternary structures, forming short spirals and extended filaments, these features making their structural studies difficult. RESULTS: A nitrilase gene was amplified by PCR from the cDNA library of Aspergillus niger K10. The PCR product was ligated into expression vectors pET-30(+) and pRSET B to construct plasmids pOK101 and pOK102, respectively. The recombinant nitrilase (Nit-ANigRec) expressed in Escherichia coli BL21-Gold(DE3)(pOK101/pTf16) was purified with an about 2-fold increase in specific activity and 35% yield. The apparent subunit size was 42.7 kDa, which is approx. 4 kDa higher than that of the enzyme isolated from the native organism (Nit-ANigWT), indicating post-translational cleavage in the enzyme's native environment. Mass spectrometry analysis showed that a C-terminal peptide (Val327 - Asn₃₅₆) was present in Nit-ANigRec but missing in Nit-ANigWT and Asp₂₉₈-Val₃₁₃ peptide was shortened to Asp₂₉₈-Arg₃₁₀ in Nit-ANigWT. The latter enzyme was thus truncated by 46 amino acids. Enzymes Nit-ANigRec and Nit-ANigWT differed in substrate specificity, acid/amide ratio, reaction optima and stability. Refolded recombinant enzyme stored for one month at 4°C was fractionated by gel filtration, and fractions were examined by electron microscopy. The late fractions were further analyzed by analytical centrifugation and dynamic light scattering, and shown to consist of a rather homogeneous protein species composed of 12-16 subunits. This hypothesis was consistent with electron microscopy and our modelling of the multimeric nitrilase, which supports an arrangement of dimers into helical segments as a plausible structural solution. CONCLUSIONS: The nitrilase from Aspergillus niger K10 is highly homologous (≥86%) with proteins deduced from gene sequencing in Aspergillus and Penicillium genera. As the first of these proteins, it was shown to exhibit nitrilase activity towards organic nitriles. The comparison of the Nit-ANigRec and Nit-ANigWT suggested that the catalytic properties of nitrilases may be changed due to missing posttranslational cleavage of the former enzyme. Nit-ANigRec exhibits a lower tendency to form filaments and, moreover, the sample homogeneity can be further improved by in vitro protein refolding. The homogeneous protein species consisting of short spirals is expected to be more suitable for structural studies.
See more in PubMed
Kim JS, Tiwari MK, Moon HJ, Jeya M, Ramu T, Oh D-K, Kim I-W, Lee J-K. Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5. Appl Microbiol Biotechnol. 2009;83:273–283. doi: 10.1007/s00253-009-1862-6. PubMed DOI
Zhu DM, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L. A new nitrilase from Bradyrhizobium japonicum USDA 110 - Gene cloning, biochemical characterization and substrate specificity. J Biotechnol. 2008;133:327–333. doi: 10.1016/j.jbiotec.2007.10.001. PubMed DOI
Heinemann U, Engels D, Bürger S, Kiziak C, Mattes R, Stolz A. Cloning of a nitrilase gene from the cyanobacterium Synechocystis sp. strain PCC6803 and heterologous expression and characterization of the encoded protein. Appl Environ Microbiol. 2003;69:4359–4366. doi: 10.1128/AEM.69.8.4359-4366.2003. PubMed DOI PMC
Mueller P, Egorova K, Vorgias CE, Boutou E, Trauthwein H, Verseck S, Antranikian G. Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. Protein Expres Purif. 2006;47:672–681. doi: 10.1016/j.pep.2006.01.006. PubMed DOI
Podar M, Eads JR, Richardson TH. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study. BMC Evol Biol. 2005;5:42. doi: 10.1186/1471-2148-5-42. PubMed DOI PMC
Seffernick JL, Samanta SK, Louie TM, Wackett LP, Subramanian M. Investigative mining of sequence data for novel enzymes: A case study with nitrilases. J Biotechnol. 2009;143:17–26. doi: 10.1016/j.jbiotec.2009.06.004. PubMed DOI
Martínková L, Vejvoda V, Kaplan O, Kubáč D, Malandra A, Cantarella M, Bezouška K, Křen V. Fungal nitrilases as biocatalysts: Recent developments. Biotechnol Adv. 2009;27:661–670. PubMed
Kaplan O, Vejvoda V, Plíhal O, Pompach P, Kavan D, Bojarová P, Bezouška K, Macková M, Cantarella M, Jirků V, Křen V, Martínková L. Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol. 2006;73:567–575. doi: 10.1007/s00253-006-0503-6. PubMed DOI
Malandra A, Cantarella M, Kaplan O, Vejvoda V, Uhnáková B, Štěpánková B, Kubáč D, Martínková L. Continuous hydrolysis of 4-cyanopyridine by nitrilases from Fusarium solani O1 and Aspergillus niger K10. Appl Microbiol Biotechnol. 2009;85:277–284. doi: 10.1007/s00253-009-2073-x. PubMed DOI
Banerjee A, Dubey S, Kaul P, Barse B, Piotrowski M, Banerjee UC. Enantioselective nitrilase from Pseudomonas putida: Cloning, heterologous expression, and bioreactor studies. Mol Biotechnol. 2009;41:35–41. doi: 10.1007/s12033-008-9094-z. PubMed DOI
Kiziak C, Conradt D, Stolz A, Mattes R, Klein J. Nitrilase from Pseudomonas fluorescens EBC 191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology. 2005;151:3639–3648. doi: 10.1099/mic.0.28246-0. PubMed DOI
Thuku RN, Weber BW, Varsani A, Sewell BT. Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J. 2007;274:2099–2108. doi: 10.1111/j.1742-4658.2007.05752.x. PubMed DOI
Wu SJ, Fogiel AJ, Petrillo KL, Hann EC, Mersinger LJ, Di Cosimo R, O'Keefe DP, Ben-Bassat A, Payne MS. Protein engineering of Acidovorax facilis 72W nitrilase for bioprocess development. Biotechnol Bioeng. 2007;97:689–693. doi: 10.1002/bit.21289. PubMed DOI
Bartling D, Seedorf M, Schmidt RC, Weiler EW. Molecular characterization of two cloned nitrilases from Arabidopsis thaliana: Key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. Proc Natl Acad Sci USA. 1994;91:6021–6025. doi: 10.1073/pnas.91.13.6021. PubMed DOI PMC
Osswald S, Wajant H, Effenberger F. Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana. Eur J Biochem. 2002;269:680–687. doi: 10.1046/j.0014-2956.2001.02702.x. PubMed DOI
Basile LJ, Willson RC, Sewell BT, Benedik MJ. Genome mining of cyanide-degrading nitrilases from filamentous fungi. Appl Microbiol Biotechnol. 2008;80:427–435. doi: 10.1007/s00253-008-1559-2. PubMed DOI
Vejvoda V, Kaplan O, Bezouška K, Pompach P, Šulc M, Cantarella M, Benada O, Uhnáková B, Rinágelová A, Lutz-Wahl S, Fischer L, Křen V, Martínková L. Purification and characterization of a nitrilase from Fusarium solani O1. J Mol Catal B-Enz. 2008;50:99–106. doi: 10.1016/j.molcatb.2007.09.006. DOI
Wang P, Van Etten HD. Cloning and properties of a cyanide hydratase gene from the phytopathogenic fungus Gloeocercospora sorghi. Biochem Biophys Res Commun. 1992;187:1048–1054. doi: 10.1016/0006-291X(92)91303-8. PubMed DOI
Dent KC, Weber BW, Benedik MJ, Sewell BT. The cyanide hydratase from Neurospora crassa forms a helix which has a dimeric repeat. Appl Microbiol Biotechnol. 2009;82:271–278. doi: 10.1007/s00253-008-1735-4. PubMed DOI
Yeom SJ, Kim HJ, Lee JK, Kim DE, Oh DK. An amino acid at position 142 in nitrilase from Rhodococcus rhodochrous ATCC 33278 determines the substrate specificity for aliphatic and aromatic nitriles. Biochem J. 2008;415:401–407. doi: 10.1042/BJ20080440. PubMed DOI PMC
Pace HC, Hodawadekar SC, Draganescu A, Huang J, Bieganowski P, Pekarsky Y, Croce CM, Brenner C. Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Curr Biol. 2000;10:907–917. doi: 10.1016/S0960-9822(00)00621-7. PubMed DOI
Sakai N, Tajika Y, Yao M, Watanabe N, Tanaka I. Crystal structure of hypothetical protein PH0642 from Pyrococcus horikoshii at 1.6 A˚ resolution. Proteins. 2004;57:869–873. doi: 10.1002/prot.20259. PubMed DOI
Kumaran D, Eswaramoorthy S, Gerchman SE, Kycia H, Studier FW, Swaminathan S. Crystal structure of a putative CN hydrolase from yeast. Proteins. 2003;52:283–291. doi: 10.1002/prot.10417. PubMed DOI
Lundgren S, Lohkamp B, Andersen B, Piškur J, Dobritzsch D. The crystal structure of β-alanine synthase from Drosophila melanogaster reveals a homooctameric helical turn-like assembly. J Mol Biol. 2008;377:1544–1559. doi: 10.1016/j.jmb.2008.02.011. PubMed DOI
Barglow KT, Saikatendu KS, Bracey MH, Huey R, Morris GM, Olson AJ, Stevens RC, Cravatt BF. Functional proteomic and structural insights into molecular recognition in the nitrilase family enzymes. Biochemistry. 2008;47:13514–13523. doi: 10.1021/bi801786y. PubMed DOI PMC
Kozielski F, Schönbrunn E, Sack S, Müller J, Brady ST, Mandelkow E. Crystallization and preliminary x-ray analysis of the single-headed and double-headed motor protein kinesin. J Struct Biol. 1997;119:28–34. doi: 10.1006/jsbi.1997.3872. PubMed DOI
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK - a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–291. doi: 10.1107/S0021889892009944. DOI
Kobayashi M, Yanaka N, Nagasawa T, Yamada H. Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of the active site residue. Biochemistry. 1992;31:9000–9007. doi: 10.1021/bi00152a042. PubMed DOI
Harper DB. Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage by Fusarium solani. Biochem J. 1977;167:685–692. PubMed PMC
Goldlust A, Bohak Z. Induction, purification, and characterization of the nitrilase of Fusarium oxysporum f. sp. melonis. Biotechnol Appl Biochem. 1989;11:581–601.
Vejvoda V, Kubáč D, Davidová A, Kaplan O, Šulc M, Šveda O, Chaloupková R, Martínková L. Purification and characterization of nitrilase from Fusarium solani IMI196840. Proc Biochem. 2010;45:1115–1120. doi: 10.1016/j.procbio.2010.03.033. DOI
O'Reilly C, Turner PD. The nitrilase family of CN hydrolysing enzymes - a comparative study. J Appl Microbiol. 2003;95:1161–1174. PubMed
Almatawah QA, Cramp R, Cowan DA. Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles. 1999;3:283–291. doi: 10.1007/s007920050129. PubMed DOI
Singh LR, Dar TA, Rahman S, Jamal S, Ahmad F. Glycine betaine may have opposite effect on protein stability at high and low pH values. Biochim Biophys Acta. 2009;1794:929–935. PubMed
Santoro MM, Liu YF, Khan SMA, Hou L-X, Bolen DW. Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry. 1992;31:5278–5283. doi: 10.1021/bi00138a006. PubMed DOI
Sewell BT, Thuku RN, Zhang X, Benedik MJ. Oligomeric structure of nitrilases. Effect of mutating interfacial residues on activity. Ann N Y Acad Sci. 2005;1056:153–159. doi: 10.1196/annals.1352.025. PubMed DOI
Woodward JD, Weber BW, Scheffer MP, Benedik MJ, Hoenger A, Sewell BT. Helical structure of unidirectionally shadowed metal replicas of cyanide hydratase from Gloeocercospora sorghi. J Struct Biol. 2008;161:111–119. doi: 10.1016/j.jsb.2007.09.019. PubMed DOI
Jandhyala D, Berman M, Meyers PR, Sewell BT, Willson RC, Benedik MJ. Cyn D, the cyanide dihydratase from Bacillus pumilus: gene cloning and structural studies. Appl Environ Microbiol. 2003;69:4794–4805. doi: 10.1128/AEM.69.8.4794-4805.2003. PubMed DOI PMC
Kiziak C, Klein J, Stolz A. Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Protein Eng Des Sel. 2007;20:385–396. doi: 10.1093/protein/gzm032. PubMed DOI
Layh N, Parratt J, Willetts A. Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Mol Catal B-Enz. 1998;5:467–474. doi: 10.1016/S1381-1177(98)00075-7. DOI
Sareen D, Sharma R, Vohra RM. Chaperone-assisted overexpression of an active D-carbamoylase from Agrobacterium tumefaciens AM 10. Protein Expres Purif. 2001;23:374–379. doi: 10.1006/prep.2001.1532. PubMed DOI
Kobayashi M, Nagasawa T, Yamada H. Nitrilase of Rhodococcus rhodochrous J1 -Purification and characterization. Eur J Biochem. 1989;182:349–356. doi: 10.1111/j.1432-1033.1989.tb14837.x. PubMed DOI
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
NCBI/BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Laemmli UK. Cleavage of the structural proteins during assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
John Philo's Software Home Page. http://www.jphilo.mailway.com
Schuck P. Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modelling. Biophys J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
SEDFIT. http://www.analyticalultracentrifugation.com
Schuck P. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem. 2003;320:104–124. doi: 10.1016/S0003-2697(03)00289-6. PubMed DOI
Benada O, Pokorný V. Modification of the polaron sputter-coater unit for glow-discharge activation of carbon support films. J Electron Microsc Tech. 1990;16:235–239. doi: 10.1002/jemt.1060160304. PubMed DOI
Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignments. J Mol Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI
Consensus secondary structure prediction. http://www.bioinf.manchester.ac.uk/dbbrowser/bioactivity/NPS2.html
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–W410. doi: 10.1093/nar/gkm290. PubMed DOI PMC
Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins. 2004;57:678–683. doi: 10.1002/prot.20251. PubMed DOI
Morris GM, Goodsell DS, Huey R, Olson AJ. Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. J Comput-Aided Mol Des. 1996;10:293–304. doi: 10.1007/BF00124499. PubMed DOI