Exploring a reaction mechanism for acetato ligand replacement in paddlewheel tetrakisacetatodirhodium (II,II) complex by ammonia: computational density functional theory study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
21229993
DOI
10.1021/jp104726s
Knihovny.cz E-zdroje
- MeSH
- amoniak chemie MeSH
- chemické modely * MeSH
- DNA chemie MeSH
- ligandy MeSH
- molekulární struktura MeSH
- organokovové sloučeniny chemie MeSH
- plyny chemie MeSH
- rhodium chemie MeSH
- rozpouštědla chemie MeSH
- termodynamika MeSH
- výpočetní biologie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- amoniak MeSH
- DNA MeSH
- ligandy MeSH
- organokovové sloučeniny MeSH
- plyny MeSH
- rhodium MeSH
- rozpouštědla MeSH
This study focuses on the first step of interaction between DNA and the paddle-wheel dirhodium complex. The ammonia molecule was used to model the oligonucleotide sequence. The reaction was considered in neutral and acidic conditions, in gas phase, and in solvent, using the COSMO model. Molecular structures of the complexes were optimized in both models at the B3PW91/6-31G(d) level. The B3LYP functional and aug-cc-pvdz basis set were employed for single-point energy determination and electron distribution analyses. It was shown that in neutral solution the replacement of axial aqua ligand is mildly exoergic. The reaction is characterized by a relatively low activation barrier (10-12 kcal/mol), and, according to Eyring transition state theory, it proceeds very quickly. The breaking of the Rh-O(ac) bond in neutral solution is mildly endoergic (less than 1 kcal/mol) with an activation barrier of about 21 kcal/mol. However, this process can occur much more spontaneously (ΔG of -14 kcal/mol) when the dirhodium complex is protonated at the acetyl oxygen in remote position.
Citace poskytuje Crossref.org