Assessing the applicability of the earth impedance method for in situ studies of tree root systems
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21273337
PubMed Central
PMC3060674
DOI
10.1093/jxb/erq370
PII: erq370
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- biometrie MeSH
- cykasy MeSH
- elektrická impedance MeSH
- kořeny rostlin anatomie a histologie fyziologie MeSH
- Magnoliopsida MeSH
- průmyslová hnojiva MeSH
- půda MeSH
- roční období MeSH
- stromy anatomie a histologie fyziologie MeSH
- xylém fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- průmyslová hnojiva MeSH
- půda MeSH
Several electrical methods have been introduced as non-invasive techniques to overcome the limited accessibility to root systems. Among them, the earth impedance method (EIM) represents the most recent development. Applying an electrical field between a cormus and the rooted soil, the EIM measures the absorptive root surface area (ARSA) from grounding resistance patterns. Allometric relationships suggested that this method was a valuable tool. Crucial assumptions for the applicability of the EIM, however, have not been tested experimentally. Focusing on tree root systems, the present study assesses the applicability of the EIM. Six hypotheses, deduced from the EIM approach, were tested in several experiments and the results were compared with conventional methods. None of the hypotheses could be verified and the results allow two major conclusions. First, in terms of an analogue electrical circuit, a tree-root-soil continuum appears as a serial circuit with xylem and soil resistance being the dominant components. Allometric variation in contact resistance, with the latter being the proxy for root surface area, are thus overruled by the spatial and seasonal variation of soil and xylem resistances. Second, in a tree-root-soil continuum, distal roots conduct only a negligible portion of the electric charge. Most of charge carriers leave the root system in the proximal parts of the root-soil interface.
Zobrazit více v PubMed
al Hagrey SA. Geophysical imaging of root-zone, trunk, and moisture heterogeneity. Journal of Experimental Botany. 2007;58:839–854. PubMed
Amato M, Basso B, Celano G, Bitella G, Morelli G, Rossi R. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. Tree Physiology. 2008;28:1441–1448. PubMed
Amato M, Bitella G, Rossi R, Gomez JA, Lovelli S, Ferreira Gomes JJ. Multi-electrode 3D resistivity imaging of alfalfa root zone. European Journal of Agronomy. 2009;31:213–222.
Asseng S, Aylmore LAG, Macfall JS, Hopmans JW, Gregory PJ. Computer-assisted tomography and magnetic resonance imaging. In: Smit AL, Bengough AG, Engels C, Van Noordwijk S, Pellerin S, Van de Geijn SC, editors. Root methods. Berlin: Springer-Verlag; 2000. pp. 343–364.
Aubrecht L, Stanek Z, Koller J. Electrical measurement of the absorption surfaces of tree roots by the earth impedance method. 1. Theory. Tree Physiology. 2006;26:1105–1112. PubMed
Butler AJ, Barbier N, Čermák J, Koller J, Thornily C, McEvoy C Nicoll B, Perks M, Grace J, Meir P. Estimates and relationships between aboveground and belowground resource exchange surface areas in Sitka spruce managed forest. Tree Physiology. 2010;30:705–714. PubMed
Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P. An appraisal of the electrical resistance method for assessing root surface area. Journal of Experimental Botany. 2010;61:2491–2497. PubMed PMC
Čermák J, Ulrich R, Staněk Z, Koller J, Aubrecht L. Electrical measurement of tree root absorbing surfaces by the earth impedance method. 2. Verification based on allometric relationships and root severing experiments. Tree Physiology. 2006;26:1113–1121. PubMed
Chloupek O. The relationship between electric capacitance and some other parameters of plant roots. Biologia Plantarum. 1972;14:227–230.
Chung HH, Kramer PJ. Absorption of water and 32P through suberized and unsuberized roots of loblolly pine. Canadian Journal of Forest Research. 1975;5:229–235.
Clemensson-Lindell A, Persson H. Fine-root vitality in a Norway spruce stand subjected to various nutrient supplies. Plant and Soil. 1995;168–169:167–172.
Dalton F. In situ root extent measurements by electrical capacitance methods. Plant and Soil. 1995;173:157–165.
Dvořák M, Černohorská J, Janáček K. Characteristics of current passage through plant tissue. Biologia Plantarum. 1981;23:306–310.
Dwight HB. Calculation of resistance to ground. AIEE Transactions. 1936;55:1319–1328.
Farrar JF, Jones DL. The control of carbon acquisition by and growth of roots. In: de Kroon H, Visser EJW, editors. Root ecology. Berlin: Springer Verlag; 2003. pp. 91–119.
Gaul D, Hertel D, Borken W, Matzner E, Leuschner C. Effects of experimental drought on the fine root system of mature Norway spruce. Forest Ecology and Management. 2008;256:1151–1159.
Genenger M, Zimmermann S, Hallenbarter D, Landolt W, Frossard E, Brunner I. Fine root growth and element concentrations of Norway spruce as affected by wood ash and liquid fertilisation. Plant and Soil. 2003;255:253–264.
Häussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz C, Marschner H. Ion and water uptake in relation to root developments in Norway spruce (Picea abies (L.) Karst.) Journal of Plant Physiology. 1988;133:486–491.
Helmisaari HS, Saarsalmi A, Kukkola M. Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland. Plant and Soil. 2009;314:121–132.
Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D. Assessing the patterns and control of fine root dynamics: an empirical test and methodological review. Journal of Ecology. 2006;94:40–57.
Hodge A. The plastic plant: root responses to heterogenous supplies of nutrients. New Phytologist. 2004;162:9–24.
Hutchings MJ, John EA. Distribution of roots in soil, and root foraging activity. In: de Kroon H, Visser EJW, editors. Root ecology. Berlin: Springer-Verlag; 2003. pp. 33–60.
Jackson RB, Mooney HA, Schulze E-D. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, USA. 1997;94:7362–7366. PubMed PMC
Jinx M, Dawalibi FP. Extended analyis of ground impedance measurement using the fall-of-potential method. IEEE Transactions on Power Delivery. 2002;4:881–885.
Kendall WA, Pederson GA, Hill RR., Jr. Root size estimates of red clover (Trifolium pratense) and alfalfa (Medicago sativa) based on electrical capacitance and root diameter measurements. Grass and Forage Science. 1982;37:253–256.
Köstler JN, Brückner E, Bibelriether H. Die Wurzeln der Waldbäume. Hamburg: Verlag; 1968. Paul Parey.
Kutschera L, Lichtenegger E. Wurzelatlas mitteleuropäischer Grünlandpflanzen. Stuttgart: Gustav Fischer Verlag; 1982.
Kutschera L, Lichtenegger E. Wurzelatlas mitteleuropäischer Waldbäume und Sträucher. Graz: Leopold Stocker Verlag; 2002.
Leuschner C, Coners H, Icke R, Hartmann K, Effinger N, Schreiber L. Chemical composition of the periderm in relation to in situ water absorption rates of oak, beech and spruce fine roots. Annals of Forest Science. 2003;60:763–772.
Leuschner C, Hertel D. Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. Progess in Botany. 2002;64:405–438.
Lyr H, Hoffmann G. Growth rates and periodicity of tree roots. International Review of Forestry Research. 1967;2:131–236.
Macfall JS, Johnson GA, Kramer PJ. Observation of a water-depletion region surrounding loblolly pine roots by magnetic resonance imaging. Proceedings of the National Academy of Sciences, USA. 1990;87:1203–1207. PubMed PMC
Macfall JS, Johnson GA, Kramer PJ. Comparative water uptake by roots of different ages in seedlings of loblolly pine (Pinus taeda) New Phytologist. 1991;119:551–560.
Mainiero R, Kazda M, Häberle K-H, Nikolova PS, Matyssek R. Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations. Environmental Pollution. 2009;157:2638–2644. PubMed
Mainiero R, Kazda M, Schmid I. Fine root dynamics in 60-year-old stands of Fagus sylvatica and Picea abies growing on haplic luvisol soil. European Journal of Forest Research. 2010;129:1001–1009.
Majdi H, Truus L, Johansson U, Nylund J-E, Wallander H. Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. Forest Ecology and Management. 2008;255:2109–2117.
Marschner H, Häussling M, George E. Ammonium and nitrate uptake rates and rhizosphere pH in non-mycrorhizal roots of Norway spruce [ Picea abies (L.) Karst.] Trees. 1991;5:14–21.
Marschner H, Roemheld V, Horst WJ, Martin P. Root-induced changes in the rhizosphere importance for the mineral nutrition of plants. Zeitschrift für Pflanzenernaehrung und Bodenkunde. 1986;149:441–456.
McBride R, Candido M, Ferguson J. Estimating root mass in maize genotypes using the electrical capacitance method. Archives of Agronomy and Soil Science. 2008;54:215–226.
Nadezhdina N, Čermák J. Instrumental methods for studies of structure and function of root systems of large trees. Journal of Experimental Botany. 2003;54:1511–1521. PubMed
Nadler A, Tyree MT. Substituting stem's water content by electrical conductivity for monitoring water status changes. Soil Science Society of America Journal. 2008;72:1006–1013.
Nardini A, Salleo S, Tyree MT. Ecological aspects of water permeability of roots. In: Waisel Y, Eshel A, Kafkafi U, editors. Plant roots: the hidden half. New York: Marcel Dekker Inc.; 2002. pp. 683–698.
Neruda J, Ulrich R, Nadezhdina N, Čermák J. 2009. Unfavorable impacts of forwarder technology on tree root systems along skidding trails and possibilites of their prevention. Proceedings of FORMEC, 21–24 June, 2009, Prague and Kostelec nad Cernymi lesy.
Ostonen I, Löhmus K, Pajuste K. Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: comparison of soil core and in growth core methods. Forest Ecology and Management. 2005;212:264–277.
Ozier-Lafontaine H, Bajazet T. Analysis of root growth by impedance spectroscopy (EIS) Plant and Soil. 2005;277:299–313.
Preston M, McBride R, Bryan J, Candido M. Estimating root mass in young hybrid poplar trees using the electrical capacitance method. Agroforestry Systems. 2004;60:305–309.
Psarras G, Merwin IA. Water stress affects rhizosphere respiration rates and root morphology of young ‘Mutsu’ apple trees on M.9 and MM.111 rootstocks. Journal of the American Society for Horticultural Science. 2000;125:588–595.
Reich PB. Root–shoot relations: optimality in acclimation and adaptation or the ‘Emperor's new clothes’? In: Waisel Y, Eshel A, Kafkafi U, editors. Plant roots the hidden half. New York: Marcel Dekker; 2002. Inc., 205–220.
Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G. Electrical resistivity survey in soil science: a review. Soil and Tillage Research. 2005;83:173–193.
Samson BK, Sinclair TR. Soil core and minirhizotron comparison for the determination of root length density. Plant and Soil. 1994;161:225–232.
Shinozaki K, Yoda K, Hozumi K, Kira T. A quantitative analysis of plant form: the pipe model theory. I. Basic analyses. Japanese Journal of Ecology. 1964;14:97–103.
Smit AL, Bengough AG, Engels C, Van Noordwijk M, Pellerin S, Van de Geijn SC. Root methods. Berlin: Springer Verlag; 2000a.
Smit AL, George E, Groenwold J. Root observations and measurements at (transparent) interfaces with soil. In: Smit AL, Bengough AG, Engels C, Van Noordwijk S, Pellerin S, Van de Geijn SC, editors. Root methods. Berlin: Springer-Verlag; 2000b. pp. 235–256.
Stokes A, Fourcaud T, Hruska J, Čermák J, Nadyezdhina N, Nadyezhdin V, Praus L. An evaluation of different methods to investigate root system architecture of urban trees in situ. I. Ground-penetrating radar. Journal of Arboriculture. 2002;28:2–10.
Tagg GF. Measurement of the resistance of physically large earth-electrode systems. Proceedings of the IEEE. 1970;117:2185–2190.
Tatarinov F, Urban J, Čermák J. Application of ‘clump technique’ for root system studies of Quercus robur and Fraxinus excelsior. Forest Ecology and Management. 2008;255:495–505.
Tierney LT, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT, Yavitt JB. Environmental control of fine root dynamics in a northern hardwood forest. Global Change Biology. 2003;9:670–679.
van Beem J, Smith ME, Zobel RW. Estimating root mass in maize using a portable capacitance meter. Agronomy Journal. 1998;90:566–570.
Van Praag HJ, Sougnez-Remy S, Waterkeyn L. L'absorption-translocation spécifique d’éléments nutritifs en relation avec la structure anatomique des radicelles de hêtre (Fagus sylvatica) et d’épicéa (Picea abies). I. Mesures de l'absorption-translocation spécifique. Belgian Journal of Botany. 1993;126:175–183.
Van Rees KCJ, Comerford NB. The role of woody roots of slash pine seedlings in water and potassium absorption. Canadian Journal of Forest Research. 1990;20:1183–1191.
Zenone T, Morelli G, Teobaldelli M, Fischanger F, Matteucci M, Sordini M, Armani A, Ferre C, Chiti T, Seufert G. Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations. Functional Plant Biology. 2008;35:1047–1058. PubMed
Zhang MI, Willison JHM. Electrical impedance analysis in plant tissues a double shell model. Journal of Experimental Botany. 1991;42:1465–1476.
Zhang MI, Willison J. Electrical impedance analysis in plant tissues: in vivo detection of freezing injury. Canadian Journal of Botany. 1992;70:2254–2258.
Zhang MI, Willison J, Cox M, Hall S. Measurement of heat injury in plant tissue by using electrical impedance analysis. Canadian Journal of Botany. 1993;71:1605–1611.