Ribonucleases endowed with specific toxicity for spermatogenic layers
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
R01 CA073808
NCI NIH HHS - United States
T32 GM007215
NIGMS NIH HHS - United States
PubMed
21399757
PubMed Central
PMC3055560
DOI
10.1016/s0305-0491(97)00278-2
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Bovine seminal ribonuclease (BS-RNase) is a dimer in which the subunits are cross-linked by disulfide bonds between Cys31 of one subunit and Cys32 of the other. Dimeric BS-RNase is resistant to ribonuclease inhibitor (RI), a protein endogenous to mammalian cells, and is toxic to a variety of cell types. Monomeric BS-RNase (like its homolog, RNase A) is bound tightly by RI and is not cytotoxic. The three-dimensional structure of the RI·RNase A complex suggests that carboxymethylation of C32S BS-RNase (to give MCM31) or C31S BS-RNase (MCM32) could diminish affinity for RI. We find that MCM31 and MCM32 are not only resistant to RI, but are also aspermatogenic to mice. In contrast to the aspermatogenic activity of dimeric BS-RNase, that of MCM31 and MCM32 is directed only at spermatogenic layers. Intratesticular injection of MCM31 or MCM32 affects neither the diameter of seminiferous tubules nor the weight of testes. Also in contrast to wild-type BS-RNase, MCM31 and MCM32 are not toxic to other cell types. Direct immunofluorescence reveals that MCM31 and MCM32 bind only to spermatogonia and primary spermatocytes. This cell specificity makes MCM31 and MCM32 of potential use in seminoma therapy and contraception.
See more in PubMed
Ardelt W, Mikulski SM, Shogen K. Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. J. Biol. Chem. 1991;266:245–251. PubMed
Bartholeyns J, Baudhuin P. Inhibition of tumor cell proliferation by dimerized ribonuclease. Proc. Natl. Acad. Sci. USA. 1976;73:573–576. PubMed PMC
Bartholeyns J, Zenebergh A. In vitro and in vivo antitumor effect of dimerized ribonuclease A. Eur. J. Cancer. 1979;15:85–91. PubMed
Beintema JJ, Schüller C, Irie M, Carsana A. Molecular evolution of the ribonuclease superfamily. Prog. Biophys. Molec. Biol. 1988;51:165–192. PubMed
Blackburn P, Gavilanes JG. Identification of lysine residues in the binding domain of ribonuclease A for the RNase inhibitor from human placenta. J. Biol. Chem. 1982;255:10959–10965. PubMed
Blackburn P, Moore S. Pancreatic ribonuclease. The Enzymes. 1982;XV:317–433.
Cafaro B, De Lorenzo C, Piccoli R, Bracale A, Mastronicola MR, Di Donato A, D'Alessio G. The antitumor action of seminal ribonuclease and its quaternary conformations. FEBS Lett. 1995;359:31–34. PubMed
Clouthier DE, Avarbock MR, Maika SD, Hammer RE, Brinster RL. Rat spermatogenesis in mouse testis. Nature. 1996;381:418–421. PubMed PMC
D'Alessio G. New and cryptic biological messages from RNases. Trends Cell Biol. 1993;3:106–109. PubMed
D'Alessio G, Di Donato A, Parente A, Piccoli R. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem. Sci. 1991;16:106–108. PubMed
D'Alessio G, Malorni MC, Parente A. Dissociation of bovine seminal ribonuclease into catalytically active monomers by selective reduction and alkylation of the intersubunit disulfide bridges. Biochemistry. 1975;14:1116–1122. PubMed
Di Donato A, Cafaro V, D'Alessio G. Ribonuclease A can be transformed into a dimeric ribonuclease with antitumor activity. J. Biol. Chem. 1994;269:17394–17396. PubMed
Di Donato A, Cafaro V, Romeo I, D'Alessio G. Hints on the evolutionary design of a dimeric RNase with special bioactions. Protein Sci. 1995;4:1470–1477. PubMed PMC
Dostál J, Matoušek J. Isolation and some chemical properties of aspermatogenic substance form bull seminal vesicle fluid. J. Reprod. Fertil. 1973;33:263–274. PubMed
Dostál J, Matoušek J. Purification of aspermatogenic substance (AS) from the bull seminal vesicle fluid. J. Reprod. Fert. 1972;31:273–275. PubMed
Elbe JN. Spermatocytic seminoma. Hum. Pathol. 1994;25:1035–1042. PubMed
Floridi A, D'Alessio G. Compartamento chromatografico della ribonucleasi seminale. Bull. Soc. Ital. Biol. Sper. 1967;43:32–36. PubMed
Harper JW, Vallee BL. A covalent angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis. Biochemistry. 1989;28:1875–1884. PubMed
Hlinák A, Matoušek J, Madlafoušek J. The effect of bull seminal ribonuclease on reproductive organs and sexual behaviour in male rats. Physiol. Bohem. 1981;30:539–542. PubMed
Hofsteenge J. “Holy” proteins I: ribonuclease inhibitor. Current Opin. Struct. Biol. 1994;4:807–809. PubMed
Kim J-S. Ph.D. Thesis. University of Wisconsin–Madison; 1994.
Kim J-S, Raines RT. Bovine seminal ribonuclease produced from a synthetic gene. J. Biol. Chem. 1993;268:17392–17396. PubMed
Kim J-S, Souček J, Matoušek J, Raines RT. Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities. Biochem. J. 1995;308:547–550. PubMed PMC
Kim J-S, Souček J, Matoušek J, Raines RT. Mechanism of ribonuclease cytotoxicity. J. Biol. Chem. 1995;270:31097–31102. PubMed
Kim J-S, Souček J, Matoušek J, Raines RT. Structural basis for the biological activities of bovine seminal ribonuclease. J. Biol. Chem. 1995;270:10525–10530. PubMed
Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995;374:183–186. PubMed
Kraft N, Shortman K. A suggested control function for the animal tissue ribonuclease – ribonuclease inhibitor system, based on studies of isolated cells and phytohaemagglutinin-transformed lymphocytes. Biochim. Biophys. Acta. 1970;217:164–175. PubMed
Kyner D, Christman JK, Acs G. The effect of 12-O-tetradecanoyl-phorbol 13-acetate on the ribonuclease activity of circulating human lymphocytes. Eur. J. Biochem. 1979;99:395–399. PubMed
Lee FS, Vallee BL. Structure and action of mammalian ribonuclease (angiogenin) inhibitor. Progr. Nucl. Acid Res. Mol. Biol. 1993;44:1–30. PubMed
Leone E, Greco L, Rastogi RK, Ieala L. Antispermatogenic properties of bull seminal ribonuclease. J. Reprod. Fert. 1973;34:197–200. PubMed
Markham R, Smith JD. The structure of ribonucleic acids. 1. Cyclic nucleotides produced by ribonuclease and by alkaline hydrolysis. Biochem. J. 1952;52:552–557. PubMed PMC
Matoušek J. Aspermatogenic effect of the bull seminal ribonuclease (BS RNase) in the presence of anti BS RNase antibodies in mice. Animal Genet. 1994;25(Suppl. 1):45–50. PubMed
Matoušek J, D'Alessio G. Bull seminal ribonuclease (BS RNase), its immunosuppressive and other biological effects—a review. Anim. Sci. Papers Rep. 1991;7:5–14.
Matoušek J, Grozdanovic J. Specific effect of bull seminal ribonuclease (AS RNase) on cell systems in mice. Comp. Biochem. Physiol. 1973;46A:241–248. PubMed
Matoušek J, Pavlok A, Dostál J, Grozdanovic J. Some biological properties of bull seminal vesicle aspermatogenic substance and its effect on mice. J. Reprod. Fert. 1973;34:9–22. PubMed
Matoušek J, Souček J, Rìha J, Zankel TR, Benner SA. Immunosuppressive activity of angiogenin in comparison with bovine seminal ribonuclease and pancreatic ribonuclease. Comp. Biochem. Physiol. 1995;112B:235–241. PubMed
Matoušek J, Souček J, Stratil A, Vallee BL. Immunosuppressive activity of angiogenin. Anim. Genet. Suppl. 1992;23:46.
Matoušek J, Stanek R. Action of bull seminal vesicle ribonuclease on mouse leukaemic cells. Folia Biol. (Prague) 1977;23:56–65. PubMed
Mazzarella L, Mattia CA, Capasso S, Di Lorenzo G. Composite active sites in bovine seminal ribonuclease. Gaz. Chim. Ital. 1987;117:91–97.
Messmore JM, Fuchs DN, Raines RT. Ribonuclease A: revealing structure–function relationships with semisynthesis. J. Am. Chem. Soc. 1995;117:8057–8060. PubMed PMC
Murthy BS, De Lorenzo C, Piccoli R, D'Alessio G, Sirdeshmukh R. Effects of protein RNase inhibitor and substrate on the quaternary structures of bovine smeinal RNase. Biochemistry. 1996;35:3880–3885. PubMed
Murthy BS, Sirdeshmukh R. Sensitivity of monomeric and dimeric forms of bovine seminal ribonuclease to human placental ribonuclease inhibitor. Biochem. J. 1992;281:343–348. PubMed PMC
Rabes HM. Proliferation of human testicular tumours. Int. J. Androl. 1987;10:127–137. PubMed
Raines RT, Toscano MP, Nierengarten DM, Ha JH, Auerbach R. Replacing a surface loop endows ribonuclease A with angiogenic activity. J. Biol. Chem. 1995;270:17180–17184. PubMed
Roth JS. Some observations on the assay and properties of ribonucleases in normal and tumor tissues. Methods Cancer Res. 1967;3:153–242.
Russell LD, Ettlin RA, Hikim AP, Clegg ED. Histological and histopathological evaluation of the testis. Cache River Press; Clearwater, FL: 1990.
Shapiro R, Vallee BL. Interaction of human placental ribonuclease with placental ribonuclese inhibitor. Biochemistry. 1991;30:2246–2255. PubMed
Souček J, Chudomel V, Potmesilova I, Novak JT. Effect of ribonucleases on cell-mediated lympholysis reaction and on cfv-c colonies in bone marrow culture. Nat. Immun. Cell Growth Regul. 1986;5:250–258. PubMed
Souček J, Marinov I, Benes J, Hilgert I, Matoušek J, Raines RT. Immunosuppressive activity of bovine seminal ribonuclease and its mode of action. Immunobiology. 1996;195:271–285. PubMed
Souček J, Matousek J, Chudomel V, Lindnerová G. Inhibitory effect of bovine seminal ribonuclease on activated lymphocytes and lymphoblastoid cell lines in vitro. Folia Biol. (Prague) 1981;27:344–335. PubMed
Thompson JE, Venegas FD, Raines RT. Energetics of catalysis by ribonucleases: fate of the 2′,3′-cyclic intermediate. Biochemistry. 1994;33:7408–7414. PubMed
Wu Y, Mikulski SM, Ardelt W, Rybak SM, Youle RJ. A cytotoxic ribonuclease. J. Biol. Chem. 1993;268:10686–10693. PubMed
Wu Y, Saxena SK, Ardelt W, Gadina M, Mikulski SM, De Lorenzo V, D'Alessio G, Youle RJ. A study of the intracellular routing of cytotoxic ribonucleases. J. Biol. Chem. 1995;270:17476–17481. PubMed