Secondary osteoporosis in patients with juvenile idiopathic arthritis

. 2011 Feb 20 ; 2011 () : 569417. [epub] 20110220

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid21403891

Bone disease in patients with juvenile idiopathic arthritis (JIA) is associated with focal (joint erosion and juxtaarticular osteopenia) and systemic bone loss (generalized osteopenia or reduction of bone mass density). Pathophysiology of bone loss is multifactorial and involves particularly proinflammatory cytokines and deleterious effects of glucocorticoid therapy. Clinical studies in patients with JIA indicate excessive activation of osteoclastogenesis and reduction of bone formation. Reduction of physical activity, muscle atrophy caused by high disease activity, and compulsory restriction in movements are also associated with bone loss. In patients with JIA, the disease can be complicated by growth cartilage involvement and systemic or local growth retardation. In the absence of preventive measures, fragility fractures can occur even at an early age.

Zobrazit více v PubMed

Hanova P, Pavelka K, Dosta C, Holcatova I, Pikhart H. Epidemiology of rheumatoid arthritis, juvenile idiopathic arthritis and gout in two regions of the Czech Republic in a descriptive population-based survey in 2002-2003. Clinical and Experimental Rheumatology. 2006;24(5):499–507. PubMed

Simon D, Fernando C, Czernichow P, Prieur AM. Linear growth and final height in patients with systemic juvenile idiopathic arthritis treated with longterm glucocorticoids. Journal of Rheumatology. 2002;29(6):1296–1300. PubMed

Wang SJ, Yang YH, Lin YT, Yang CM, Chiang BL. Attained adult height in juvenile rheumatoid arthritis with or without corticosteroid treatment. Clinical Rheumatology. 2002;21(5):363–368. PubMed

Pepmueller PH, Cassidy JT, Allen SH, Hillman LS. Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid arthritis. Arthritis & Rheumatism. 1996;39(5):746–757. PubMed

Henderson CJ, Specker BL, Sierra RI, Campaigne BN, Lovell DJ. Total-body bone mineral content in non-corticosteroid-treated postpubertal females with juvenile rheumatoid arthritis: frequency of osteopenia and contributing factors. Arthritis & Rheumatism. 2000;43(3):531–540. PubMed

Reed AM, Haugen M, Pachman LM, Langman CB. Repair of osteopenia in children with juvenile rheumatoid arthritis. Journal of Pediatrics. 1993;122(5):693–696. PubMed

Reeve J, Loftus J, Hesp R, Ansell BM, Wright DJ, Woo PMM. Biochemical prediction of changes in spinal bone mass in juvenile chronic (or rheumatoid) arthritis treated with glucocorticoids. Journal of Rheumatology. 1993;20(7):1189–1195. PubMed

Henderson CJ, Cawkwell GD, Specker BL, et al. Predictors of total body bone mineral density in non-corticosteroid- treated prepubertal children with juvenile rheumatoid arthritis. Arthritis & Rheumatism. 1997;40(11):1967–1975. PubMed

Lien G, Flatø B, Haugen M, et al. Frequency of osteopenia in adolescents with early-onset juvenile idiopathic arthritis: a long-term outcome study of one hundred five patients. Arthritis & Rheumatism. 2003;48(8):2214–2223. PubMed

Zak M, Hassager C, Lovell DJ, Nielsen S, Henderson CJ, Pedersen FK. Assessment of bone mineral density in adults with a history of juvenile chronic arthritis: a cross-sectional long-term followup study. Arthritis & Rheumatism. 1999;42(4):790–798. PubMed

Haugen M, Lien G, Flatø B, et al. Young adults with juvenile arthritis in remission attain normal peak bone mass at the lumbar spine and forearm. Arthritis & Rheumatism. 2000;43(7):1504–1510. PubMed

French AR, Mason T, Nelson AM, et al. Osteopenia in adults with a history of juvenile rheumatoid arthritis. A population based study. Journal of Rheumatology. 2002;29(5):1065–1070. PubMed

Varonos S, Ansell BM, Reeve J. Vertebral collapse in juvenile chronic arthritis: its relationship with glucocorticoid therapy. Calcified Tissue International. 1987;41(2):75–78. PubMed

Badley BW, Ansell BM. Fractures in still’s disease. Annals of the Rheumatic Diseases. 1960;19:135–142. PubMed PMC

Burnham JM, Shults J, Weinstein R, Lewis JD, Leonard MB. Childhood onset arthritis is associated with an increased risk of fracture: a population based study using the General Practice Research Database. Annals of the Rheumatic Diseases. 2006;65(8):1074–1079. PubMed PMC

Elsasser U, Wilkins B, Hesp R, Thurnham DI, Reeve J, Ansell BM. Bone rarefaction and crush fractures in juvenile chronic arthritis. Archives of Disease in Childhood. 1982;57(5):377–380. PubMed PMC

Murray K, Boyle RJ, Woo LP. Pathological fractures and osteoporosis in a cohort of 103 systemic onset juvenile idiopathic arthritis patients. Arthritis & Rheumatism. 2000;43(supplement):p. S119.

Roth J, Palm C, Scheunemann I, Ranke MB, Schweizer R, Dannecker GE. Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis & Rheumatism. 2004;50(4):1277–1285. PubMed

Burnham JM, Shults J, Sembhi H, Zemel BS, Leonard MB. The dysfunctional muscle-bone unit in juvenile idiopathic arthritis. Journal of Musculoskeletal Neuronal Interactions. 2006;6(4):351–352. PubMed

Lindehammar H, Lindvall B. Muscle involvement in juvenile idiopathic arthritis. Rheumatology. 2004;43(12):1546–1554. PubMed

Gattorno M, Vignola S, Falcini F, et al. Serum and synovial fluid concentrations of matrix metalloproteinases 3 and its tissue inhibitor 1 in juvenile idiopathic arthritides. Journal of Rheumatology. 2002;29(4):826–831. PubMed

Rabinovich CE. Bone mineral status in juvenile rheumatoid arthritis. Journal of Rheumatology. 2000;27(58):34–37. PubMed

Ma D, Jones G. Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study. Journal of Bone and Mineral Research. 2003;18(11):1970–1977. PubMed

Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. Journal of Pediatrics. 2001;139(4):509–515. PubMed

Felin EMO, Prahalad S, Askew EW, Moyer-Mileur LJ. Musculoskeletal abnormalities of the tibia in juvenile rheumatoid arthritis. Arthritis & Rheumatism. 2007;56(3):984–994. PubMed

MacRae VE, Farquharson C, Ahmed SF. The pathophysiology of the growth plate in juvenile idiopathic arthritis. Rheumatology. 2006;45(1):11–19. PubMed

Saha MT, Haapasaari J, Hannula S, Sarna S, Lenko HL. Growth hormone is effective in the treatment of severe growth retardation in children with juvenile chronic arthritis. Double blind placebo-controlled followup study. Journal of Rheumatology. 2004;31(7):1413–1417. PubMed

Hillman L, Cassidy JT, Johnson L, Lee D, Allen SH. Vitamin D metabolism and bone mineralization in children with juvenile rheumatoid arthritis. Journal of Pediatrics. 1994;124(6):910–916. PubMed

Górska A, Urban M, Bartnicka M, Zelazowska-Rutkowska B, Wysocka J. Bone mineral metabolism in children with juvenile idiopathic arthritis. Ortopedia Traumatologia Rehabilitacja. 2008;10(1):54–62. PubMed

Pereira RMR, Falco V, Corrente JE, Chahade WH, Yoshinari NH. Abnormalities in the biochemical markers of bone turnover in children with juvenile chronic arthritis. Clinical and Experimental Rheumatology. 1999;17(2):251–255. PubMed

Goldring SR. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology. 2003;42(2, supplement):ii11–ii16. PubMed

Strand V, Kavanaugh AF. The role of interleukin-1 in bone resorption in rheumatoid arthritis. Rheumatology. 2004;43(supplement 3):iii10–iii16. PubMed

Redlich K, Hayer S, Maier A, et al. Tumor necrosis factor α-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis & Rheumatism. 2002;46(3):785–792. PubMed

Viswanathan A, Sylvester FA. Chronic pediatric inflammatory diseases: effects on bone. Reviews in Endocrine and Metabolic Disorders. 2008;9(2):107–122. PubMed

Wei S, Kitaura H, Zhou P, Patrick Ross F, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. Journal of Clinical Investigation. 2005;115(2):282–290. PubMed PMC

Thomson BM, Mundy GR, Chambers TJ. Tumor necrosis factors α and β induce osteoblastic cells to stimulate osteoclastic bone resorption. Journal of Immunology. 1987;138(3):775–779. PubMed

Vanden Berghe W, Vermeulen L, Delerive P, De Bosscher K, Staels B, Haegeman G. A paradigm for gene regulation: inflammation, NF-κB and PPAR. Advances in Experimental Medicine and Biology. 2003;544:181–196. PubMed

Nanes MS. Tumor necrosis factor-α: molecular and cellular mechanisms in skeletal pathology. Gene. 2003;321(1-2):1–15. PubMed

Smith BJ, Lerner MR, Bu SY, et al. Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone. 2006;38(3):378–386. PubMed

Steeve KT, Marc P, Sandrine T, Dominique H, Yannick F. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine and Growth Factor Reviews. 2004;15(1):49–60. PubMed

Jimi E, Nakamura I, Duong LT, et al. Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Experimental Cell Research. 1999;247(1):84–93. PubMed

McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Reviews Immunology. 2007;7(6):429–442. PubMed

Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annual Review of Immunology. 2007;25:821–852. PubMed

Lubberts E, Koenders M, van den Berg WB. The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Research and Therapy. 2005;7(1):29–37. PubMed PMC

Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. Journal of Clinical Investigation. 1999;103(9):1345–1352. PubMed PMC

Lubberts E, van den Bersselaar L, Oppers-Walgreen B, et al. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-κB ligand/osteoprotegerin balance. Journal of Immunology. 2003;170(5):2655–2662. PubMed

Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–176. PubMed

Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(7):3597–3602. PubMed PMC

Quinn JMW, Elliott J, Gillespie MT, Martin TJ. A combination of osteoclast differentiation factor and macrophage- colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology. 1998;139(10):4424–4427. PubMed

Matsuzaki K, Udagawa N, Takahashi N, et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochemical and Biophysical Research Communications. 1998;246(1):199–204. PubMed

Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–319. PubMed

Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. Journal of Bone and Mineral Research. 2000;15(1):2–12. PubMed

Ziolkowska M, Kurowska M, Radzikowska A, et al. High levels of osteoprotegerin and soluble receptor activator of nuclear factor kappa B ligand in serum of rheumatoid arthritis patients and their normalization after anti-tumor necrosis factor alpha treatment. Arthritis & Rheumatism. 2002;46(7):1744–1753. PubMed

Rouster-Stevens KA, Langman CB, Price HE, et al. RANKL: osteoprotegerin ratio and bone mineral density in children with untreated juvenile dermatomyositis. Arthritis & Rheumatism. 2007;56(3):977–983. PubMed

Sarma PK, Misra R, Aggarwal A. Elevated serum receptor activator of NFκB ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase (MMP)3, and ProMMP1 in patients with juvenile idiopathic arthritis. Clinical Rheumatology. 2008;27(3):289–294. PubMed

Spelling P, Bonfa E, Caparbo VF, Pereira RMR. Osteoprotegerin/RANKL system imbalance in active polyarticular-onset juvenile idiopathic arthritis: a bone damage biomarker? Scandinavian Journal of Rheumatology. 2008;37(6):439–444. PubMed

Agarwal S, Misra R, Aggarwal A. Synovial fluid RANKL and matrix metalloproteinase levels in enthesitis related arthritis subtype of juvenile idiopathic arthritis. Rheumatology International. 2009;29(8):907–911. PubMed

Lien G, Selvaag AM, Flatø B, et al. A two-year prospective controlled study of bone mass and bone turnover in children with early juvenile idiopathic arthritis. Arthritis & Rheumatism. 2005;52(3):833–840. PubMed

Falcini F, Ermini M, Bagnoli F. Bone turnover is reduced in children with juvenile rheumatoid arthritis. Journal of Endocrinological Investigation. 1998;21(1):31–36. PubMed

Li Y, Li A, Strait K, Zhang H, Nanes MS, Weitzmann MN. Endogenous TNFα lowers maximum peak bone mass and inhibits osteoblastic smad activation through NF-κB. Journal of Bone and Mineral Research. 2007;22(5):646–655. PubMed

Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nature Medicine. 2007;13(2):156–163. PubMed

Bodine PVN, Komm BS. Wnt signaling and osteoblastogenesis. Reviews in Endocrine and Metabolic Disorders. 2006;7(1-2):33–39. PubMed

Krishnan V, Bryant HU, MacDougald OA. Regulation of bone mass by Wnt signaling. Journal of Clinical Investigation. 2006;116(5):1202–1209. PubMed PMC

Glass DA, 2nd, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Developmental Cell. 2005;8(5):751–764. PubMed

Lamb R, Thomson W, Ogilvie E, Donn R. Wnt-1-inducible signaling pathway protein 3 and susceptibility to juvenile idiopathic arthritis. Arthritis & Rheumatism. 2005;52(11):3548–3553. PubMed

Sullivan KE. Inflammation in juvenile idiopathic arthritis. Pediatric Clinics of North America. 2005;52(2):335–357. PubMed

Peake NJ, Foster HE, Khawaja K, Cawston TE, Rowan AD. Assessment of the clinical significance of gelatinase activity in patients with juvenile idiopathic arthritis using quantitative protein substrate zymography. Annals of the Rheumatic Diseases. 2006;65(4):501–507. PubMed PMC

Peake NJ, Khawaja K, Myers A, et al. Levels of matrix metalloproteinase (MMP)-1 in paired sera and synovial fluids of juvenile idiopathic arthritis patients: relationship to inflammatory activity, MMP-3 and tissue inhibitor of metalloproteinases-1 in a longitudinal study. Rheumatology. 2005;44(11):1383–1389. PubMed

Bianchi ML. Glucorticoids and bone: some general remarks and some special observations in pediatric patients. Calcified Tissue International. 2002;70(5):384–390. PubMed

Canalis E. Mechanisms of glucocorticoid action in bone. Current Osteoporosis Reports. 2005;3(3):98–102. PubMed

Blanchi ML, Cimaz R, Galbiati E, Corona F, Cherubini R, Bardare M. Bone mass change during methotrexate treatment in patients with juvenile rheumatoid arthritis. Osteoporosis International. 1999;10(1):20–25. PubMed

Mandel K, Atkinson S, Barr RD, Pencharz P. Skeletal morbidity in childhood acute lymphoblastic leukemia. Journal of Clinical Oncology. 2004;22(7):1215–1221. PubMed

Cranney AB, McKendry RJ, Wells GA, et al. The effect of low dose methotrexate on bone density. Journal of Rheumatology. 2001;28(11):2395–2399. PubMed

Lahdenne P, Vähäsalo P, Honkanen V. Infliximab or etanercept in the treatment of children with refractory juvenile idiopathic arthritis: an open label study. Annals of the Rheumatic Diseases. 2003;62(3):245–247. PubMed PMC

Simonini G, Giani T, Stagi S, de Martino M, Falcini F. Bone status over 1 yr of etanercept treatment in juvenile idiopathic arthritis. Rheumatology. 2005;44(6):777–780. PubMed

Vojvodich PF, Hansen JB, Andersson U, Sävendahl L, Hagelberg S. Etanercept treatment improves longitudinal growth in prepubertal children with juvenile idiopathic arthritis. Journal of Rheumatology. 2007;34(12):2481–2485. PubMed

Ward LM, Rauch F, Whyte MP. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. Journal of Clinical Endocrinology & Metabolism. In press. PubMed

Reed A, Haugen M, Pachman LM, Langman CB. 25-Hydroxyvitamin D therapy in children with active juvenile rheumatoid arthritis: short-term effects on serum osteocalcin levels and bone mineral density. Journal of Pediatrics. 1991;119(4):657–660. PubMed

Falcini F, Trapani S, Ermini M, Brandi ML. Intravenous administration of alendronate counteracts the in vivo effects of glucocorticoids on bone remodeling. Calcified Tissue International. 1996;58(3):166–169. PubMed

Siamopoulou A, Challa A, Kapoglou P, Cholevas V, Mavridis AK, Lapatsanis PD. Effects of intranasal salmon calcitonin in juvenile idiopathic arthritis: an observational study. Calcified Tissue International. 2001;69(1):25–30. PubMed

Simon D, Prieur AM, Czernichow P. Treatment of juvenile rheumatoid arthritis with growth hormone. Hormone Research. 2000;53(1, supplement):82–86. PubMed

Touati G, Ruiz JC, Porquet D, Kindermans C, Prieur AM, Czernichow P. Effects on bone metabolism of one year recombinant human growth hormone administration to children with juvenile chronic arthritis undergoing chronic steroid therapy. Journal of Rheumatology. 2000;27(5):1287–1293. PubMed

Rooney M, Davies UM, Reeve J, Preece M, Ansell BM, Woo PMM. Bone mineral content and bone mineral metabolism: changes after growth hormone treatment in juvenile chronic arthritis. Journal of Rheumatology. 2000;27(4):1073–1081. PubMed

Bechtold S, Ripperger P, Mühlbayer D, et al. GH therapy in juvenile chronic arthritis: results of a two-year controlled study on growth and bone. Journal of Clinical Endocrinology and Metabolism. 2001;86(12):5737–5744. PubMed

Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. The New England Journal of Medicine. 2001;344(19):1434–1441. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...