Secondary osteoporosis in patients with juvenile idiopathic arthritis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
21403891
PubMed Central
PMC3043287
DOI
10.4061/2011/569417
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Bone disease in patients with juvenile idiopathic arthritis (JIA) is associated with focal (joint erosion and juxtaarticular osteopenia) and systemic bone loss (generalized osteopenia or reduction of bone mass density). Pathophysiology of bone loss is multifactorial and involves particularly proinflammatory cytokines and deleterious effects of glucocorticoid therapy. Clinical studies in patients with JIA indicate excessive activation of osteoclastogenesis and reduction of bone formation. Reduction of physical activity, muscle atrophy caused by high disease activity, and compulsory restriction in movements are also associated with bone loss. In patients with JIA, the disease can be complicated by growth cartilage involvement and systemic or local growth retardation. In the absence of preventive measures, fragility fractures can occur even at an early age.
Zobrazit více v PubMed
Hanova P, Pavelka K, Dosta C, Holcatova I, Pikhart H. Epidemiology of rheumatoid arthritis, juvenile idiopathic arthritis and gout in two regions of the Czech Republic in a descriptive population-based survey in 2002-2003. Clinical and Experimental Rheumatology. 2006;24(5):499–507. PubMed
Simon D, Fernando C, Czernichow P, Prieur AM. Linear growth and final height in patients with systemic juvenile idiopathic arthritis treated with longterm glucocorticoids. Journal of Rheumatology. 2002;29(6):1296–1300. PubMed
Wang SJ, Yang YH, Lin YT, Yang CM, Chiang BL. Attained adult height in juvenile rheumatoid arthritis with or without corticosteroid treatment. Clinical Rheumatology. 2002;21(5):363–368. PubMed
Pepmueller PH, Cassidy JT, Allen SH, Hillman LS. Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid arthritis. Arthritis & Rheumatism. 1996;39(5):746–757. PubMed
Henderson CJ, Specker BL, Sierra RI, Campaigne BN, Lovell DJ. Total-body bone mineral content in non-corticosteroid-treated postpubertal females with juvenile rheumatoid arthritis: frequency of osteopenia and contributing factors. Arthritis & Rheumatism. 2000;43(3):531–540. PubMed
Reed AM, Haugen M, Pachman LM, Langman CB. Repair of osteopenia in children with juvenile rheumatoid arthritis. Journal of Pediatrics. 1993;122(5):693–696. PubMed
Reeve J, Loftus J, Hesp R, Ansell BM, Wright DJ, Woo PMM. Biochemical prediction of changes in spinal bone mass in juvenile chronic (or rheumatoid) arthritis treated with glucocorticoids. Journal of Rheumatology. 1993;20(7):1189–1195. PubMed
Henderson CJ, Cawkwell GD, Specker BL, et al. Predictors of total body bone mineral density in non-corticosteroid- treated prepubertal children with juvenile rheumatoid arthritis. Arthritis & Rheumatism. 1997;40(11):1967–1975. PubMed
Lien G, Flatø B, Haugen M, et al. Frequency of osteopenia in adolescents with early-onset juvenile idiopathic arthritis: a long-term outcome study of one hundred five patients. Arthritis & Rheumatism. 2003;48(8):2214–2223. PubMed
Zak M, Hassager C, Lovell DJ, Nielsen S, Henderson CJ, Pedersen FK. Assessment of bone mineral density in adults with a history of juvenile chronic arthritis: a cross-sectional long-term followup study. Arthritis & Rheumatism. 1999;42(4):790–798. PubMed
Haugen M, Lien G, Flatø B, et al. Young adults with juvenile arthritis in remission attain normal peak bone mass at the lumbar spine and forearm. Arthritis & Rheumatism. 2000;43(7):1504–1510. PubMed
French AR, Mason T, Nelson AM, et al. Osteopenia in adults with a history of juvenile rheumatoid arthritis. A population based study. Journal of Rheumatology. 2002;29(5):1065–1070. PubMed
Varonos S, Ansell BM, Reeve J. Vertebral collapse in juvenile chronic arthritis: its relationship with glucocorticoid therapy. Calcified Tissue International. 1987;41(2):75–78. PubMed
Badley BW, Ansell BM. Fractures in still’s disease. Annals of the Rheumatic Diseases. 1960;19:135–142. PubMed PMC
Burnham JM, Shults J, Weinstein R, Lewis JD, Leonard MB. Childhood onset arthritis is associated with an increased risk of fracture: a population based study using the General Practice Research Database. Annals of the Rheumatic Diseases. 2006;65(8):1074–1079. PubMed PMC
Elsasser U, Wilkins B, Hesp R, Thurnham DI, Reeve J, Ansell BM. Bone rarefaction and crush fractures in juvenile chronic arthritis. Archives of Disease in Childhood. 1982;57(5):377–380. PubMed PMC
Murray K, Boyle RJ, Woo LP. Pathological fractures and osteoporosis in a cohort of 103 systemic onset juvenile idiopathic arthritis patients. Arthritis & Rheumatism. 2000;43(supplement):p. S119.
Roth J, Palm C, Scheunemann I, Ranke MB, Schweizer R, Dannecker GE. Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis & Rheumatism. 2004;50(4):1277–1285. PubMed
Burnham JM, Shults J, Sembhi H, Zemel BS, Leonard MB. The dysfunctional muscle-bone unit in juvenile idiopathic arthritis. Journal of Musculoskeletal Neuronal Interactions. 2006;6(4):351–352. PubMed
Lindehammar H, Lindvall B. Muscle involvement in juvenile idiopathic arthritis. Rheumatology. 2004;43(12):1546–1554. PubMed
Gattorno M, Vignola S, Falcini F, et al. Serum and synovial fluid concentrations of matrix metalloproteinases 3 and its tissue inhibitor 1 in juvenile idiopathic arthritides. Journal of Rheumatology. 2002;29(4):826–831. PubMed
Rabinovich CE. Bone mineral status in juvenile rheumatoid arthritis. Journal of Rheumatology. 2000;27(58):34–37. PubMed
Ma D, Jones G. Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study. Journal of Bone and Mineral Research. 2003;18(11):1970–1977. PubMed
Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. Journal of Pediatrics. 2001;139(4):509–515. PubMed
Felin EMO, Prahalad S, Askew EW, Moyer-Mileur LJ. Musculoskeletal abnormalities of the tibia in juvenile rheumatoid arthritis. Arthritis & Rheumatism. 2007;56(3):984–994. PubMed
MacRae VE, Farquharson C, Ahmed SF. The pathophysiology of the growth plate in juvenile idiopathic arthritis. Rheumatology. 2006;45(1):11–19. PubMed
Saha MT, Haapasaari J, Hannula S, Sarna S, Lenko HL. Growth hormone is effective in the treatment of severe growth retardation in children with juvenile chronic arthritis. Double blind placebo-controlled followup study. Journal of Rheumatology. 2004;31(7):1413–1417. PubMed
Hillman L, Cassidy JT, Johnson L, Lee D, Allen SH. Vitamin D metabolism and bone mineralization in children with juvenile rheumatoid arthritis. Journal of Pediatrics. 1994;124(6):910–916. PubMed
Górska A, Urban M, Bartnicka M, Zelazowska-Rutkowska B, Wysocka J. Bone mineral metabolism in children with juvenile idiopathic arthritis. Ortopedia Traumatologia Rehabilitacja. 2008;10(1):54–62. PubMed
Pereira RMR, Falco V, Corrente JE, Chahade WH, Yoshinari NH. Abnormalities in the biochemical markers of bone turnover in children with juvenile chronic arthritis. Clinical and Experimental Rheumatology. 1999;17(2):251–255. PubMed
Goldring SR. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology. 2003;42(2, supplement):ii11–ii16. PubMed
Strand V, Kavanaugh AF. The role of interleukin-1 in bone resorption in rheumatoid arthritis. Rheumatology. 2004;43(supplement 3):iii10–iii16. PubMed
Redlich K, Hayer S, Maier A, et al. Tumor necrosis factor α-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis & Rheumatism. 2002;46(3):785–792. PubMed
Viswanathan A, Sylvester FA. Chronic pediatric inflammatory diseases: effects on bone. Reviews in Endocrine and Metabolic Disorders. 2008;9(2):107–122. PubMed
Wei S, Kitaura H, Zhou P, Patrick Ross F, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. Journal of Clinical Investigation. 2005;115(2):282–290. PubMed PMC
Thomson BM, Mundy GR, Chambers TJ. Tumor necrosis factors α and β induce osteoblastic cells to stimulate osteoclastic bone resorption. Journal of Immunology. 1987;138(3):775–779. PubMed
Vanden Berghe W, Vermeulen L, Delerive P, De Bosscher K, Staels B, Haegeman G. A paradigm for gene regulation: inflammation, NF-κB and PPAR. Advances in Experimental Medicine and Biology. 2003;544:181–196. PubMed
Nanes MS. Tumor necrosis factor-α: molecular and cellular mechanisms in skeletal pathology. Gene. 2003;321(1-2):1–15. PubMed
Smith BJ, Lerner MR, Bu SY, et al. Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone. 2006;38(3):378–386. PubMed
Steeve KT, Marc P, Sandrine T, Dominique H, Yannick F. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine and Growth Factor Reviews. 2004;15(1):49–60. PubMed
Jimi E, Nakamura I, Duong LT, et al. Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Experimental Cell Research. 1999;247(1):84–93. PubMed
McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Reviews Immunology. 2007;7(6):429–442. PubMed
Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annual Review of Immunology. 2007;25:821–852. PubMed
Lubberts E, Koenders M, van den Berg WB. The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Research and Therapy. 2005;7(1):29–37. PubMed PMC
Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. Journal of Clinical Investigation. 1999;103(9):1345–1352. PubMed PMC
Lubberts E, van den Bersselaar L, Oppers-Walgreen B, et al. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-κB ligand/osteoprotegerin balance. Journal of Immunology. 2003;170(5):2655–2662. PubMed
Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–176. PubMed
Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(7):3597–3602. PubMed PMC
Quinn JMW, Elliott J, Gillespie MT, Martin TJ. A combination of osteoclast differentiation factor and macrophage- colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology. 1998;139(10):4424–4427. PubMed
Matsuzaki K, Udagawa N, Takahashi N, et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochemical and Biophysical Research Communications. 1998;246(1):199–204. PubMed
Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–319. PubMed
Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. Journal of Bone and Mineral Research. 2000;15(1):2–12. PubMed
Ziolkowska M, Kurowska M, Radzikowska A, et al. High levels of osteoprotegerin and soluble receptor activator of nuclear factor kappa B ligand in serum of rheumatoid arthritis patients and their normalization after anti-tumor necrosis factor alpha treatment. Arthritis & Rheumatism. 2002;46(7):1744–1753. PubMed
Rouster-Stevens KA, Langman CB, Price HE, et al. RANKL: osteoprotegerin ratio and bone mineral density in children with untreated juvenile dermatomyositis. Arthritis & Rheumatism. 2007;56(3):977–983. PubMed
Sarma PK, Misra R, Aggarwal A. Elevated serum receptor activator of NFκB ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase (MMP)3, and ProMMP1 in patients with juvenile idiopathic arthritis. Clinical Rheumatology. 2008;27(3):289–294. PubMed
Spelling P, Bonfa E, Caparbo VF, Pereira RMR. Osteoprotegerin/RANKL system imbalance in active polyarticular-onset juvenile idiopathic arthritis: a bone damage biomarker? Scandinavian Journal of Rheumatology. 2008;37(6):439–444. PubMed
Agarwal S, Misra R, Aggarwal A. Synovial fluid RANKL and matrix metalloproteinase levels in enthesitis related arthritis subtype of juvenile idiopathic arthritis. Rheumatology International. 2009;29(8):907–911. PubMed
Lien G, Selvaag AM, Flatø B, et al. A two-year prospective controlled study of bone mass and bone turnover in children with early juvenile idiopathic arthritis. Arthritis & Rheumatism. 2005;52(3):833–840. PubMed
Falcini F, Ermini M, Bagnoli F. Bone turnover is reduced in children with juvenile rheumatoid arthritis. Journal of Endocrinological Investigation. 1998;21(1):31–36. PubMed
Li Y, Li A, Strait K, Zhang H, Nanes MS, Weitzmann MN. Endogenous TNFα lowers maximum peak bone mass and inhibits osteoblastic smad activation through NF-κB. Journal of Bone and Mineral Research. 2007;22(5):646–655. PubMed
Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nature Medicine. 2007;13(2):156–163. PubMed
Bodine PVN, Komm BS. Wnt signaling and osteoblastogenesis. Reviews in Endocrine and Metabolic Disorders. 2006;7(1-2):33–39. PubMed
Krishnan V, Bryant HU, MacDougald OA. Regulation of bone mass by Wnt signaling. Journal of Clinical Investigation. 2006;116(5):1202–1209. PubMed PMC
Glass DA, 2nd, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Developmental Cell. 2005;8(5):751–764. PubMed
Lamb R, Thomson W, Ogilvie E, Donn R. Wnt-1-inducible signaling pathway protein 3 and susceptibility to juvenile idiopathic arthritis. Arthritis & Rheumatism. 2005;52(11):3548–3553. PubMed
Sullivan KE. Inflammation in juvenile idiopathic arthritis. Pediatric Clinics of North America. 2005;52(2):335–357. PubMed
Peake NJ, Foster HE, Khawaja K, Cawston TE, Rowan AD. Assessment of the clinical significance of gelatinase activity in patients with juvenile idiopathic arthritis using quantitative protein substrate zymography. Annals of the Rheumatic Diseases. 2006;65(4):501–507. PubMed PMC
Peake NJ, Khawaja K, Myers A, et al. Levels of matrix metalloproteinase (MMP)-1 in paired sera and synovial fluids of juvenile idiopathic arthritis patients: relationship to inflammatory activity, MMP-3 and tissue inhibitor of metalloproteinases-1 in a longitudinal study. Rheumatology. 2005;44(11):1383–1389. PubMed
Bianchi ML. Glucorticoids and bone: some general remarks and some special observations in pediatric patients. Calcified Tissue International. 2002;70(5):384–390. PubMed
Canalis E. Mechanisms of glucocorticoid action in bone. Current Osteoporosis Reports. 2005;3(3):98–102. PubMed
Blanchi ML, Cimaz R, Galbiati E, Corona F, Cherubini R, Bardare M. Bone mass change during methotrexate treatment in patients with juvenile rheumatoid arthritis. Osteoporosis International. 1999;10(1):20–25. PubMed
Mandel K, Atkinson S, Barr RD, Pencharz P. Skeletal morbidity in childhood acute lymphoblastic leukemia. Journal of Clinical Oncology. 2004;22(7):1215–1221. PubMed
Cranney AB, McKendry RJ, Wells GA, et al. The effect of low dose methotrexate on bone density. Journal of Rheumatology. 2001;28(11):2395–2399. PubMed
Lahdenne P, Vähäsalo P, Honkanen V. Infliximab or etanercept in the treatment of children with refractory juvenile idiopathic arthritis: an open label study. Annals of the Rheumatic Diseases. 2003;62(3):245–247. PubMed PMC
Simonini G, Giani T, Stagi S, de Martino M, Falcini F. Bone status over 1 yr of etanercept treatment in juvenile idiopathic arthritis. Rheumatology. 2005;44(6):777–780. PubMed
Vojvodich PF, Hansen JB, Andersson U, Sävendahl L, Hagelberg S. Etanercept treatment improves longitudinal growth in prepubertal children with juvenile idiopathic arthritis. Journal of Rheumatology. 2007;34(12):2481–2485. PubMed
Ward LM, Rauch F, Whyte MP. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. Journal of Clinical Endocrinology & Metabolism. In press. PubMed
Reed A, Haugen M, Pachman LM, Langman CB. 25-Hydroxyvitamin D therapy in children with active juvenile rheumatoid arthritis: short-term effects on serum osteocalcin levels and bone mineral density. Journal of Pediatrics. 1991;119(4):657–660. PubMed
Falcini F, Trapani S, Ermini M, Brandi ML. Intravenous administration of alendronate counteracts the in vivo effects of glucocorticoids on bone remodeling. Calcified Tissue International. 1996;58(3):166–169. PubMed
Siamopoulou A, Challa A, Kapoglou P, Cholevas V, Mavridis AK, Lapatsanis PD. Effects of intranasal salmon calcitonin in juvenile idiopathic arthritis: an observational study. Calcified Tissue International. 2001;69(1):25–30. PubMed
Simon D, Prieur AM, Czernichow P. Treatment of juvenile rheumatoid arthritis with growth hormone. Hormone Research. 2000;53(1, supplement):82–86. PubMed
Touati G, Ruiz JC, Porquet D, Kindermans C, Prieur AM, Czernichow P. Effects on bone metabolism of one year recombinant human growth hormone administration to children with juvenile chronic arthritis undergoing chronic steroid therapy. Journal of Rheumatology. 2000;27(5):1287–1293. PubMed
Rooney M, Davies UM, Reeve J, Preece M, Ansell BM, Woo PMM. Bone mineral content and bone mineral metabolism: changes after growth hormone treatment in juvenile chronic arthritis. Journal of Rheumatology. 2000;27(4):1073–1081. PubMed
Bechtold S, Ripperger P, Mühlbayer D, et al. GH therapy in juvenile chronic arthritis: results of a two-year controlled study on growth and bone. Journal of Clinical Endocrinology and Metabolism. 2001;86(12):5737–5744. PubMed
Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. The New England Journal of Medicine. 2001;344(19):1434–1441. PubMed