Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
21711910
PubMed Central
PMC3211478
DOI
10.1186/1556-276x-6-385
PII: 1556-276X-6-385
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode.
Zobrazit více v PubMed
Sadaf JR, Israr MQ, Kishwar S, Nur O, Willander M. White electroluminescence using ZnO nanotubes/GaN heterostructure light-emitting diode. Nanoscale Res Lett. 2010;5:957–960. doi: 10.1007/s11671-010-9588-z. PubMed DOI PMC
Wang SQ, Li GH, Du GD, Li L, Jiang XY, Feng CQ, Guo ZP, Kim S. Synthesis and characterization of cobalt-doped WS2 nanorods for lithium battery applications. Nanoscale Res Lett. 2010;5:1301–1306. doi: 10.1007/s11671-010-9642-x. PubMed DOI PMC
Prasek J, Adamek M, Hubalek J, Adam V, Trnkova L, Kizek R. New hydrodynamic electrochemical arrangement for cadmium ions detection using thick-film chemical sensor electrodes. Sensors. 2006;6:1498–1512. doi: 10.3390/s6111498. DOI
Albareda-Sirvent M, Merkoci A, Alegret S. Configurations used in the design of screen-printed enzymatic biosensors. A review. Sens Actuator B Chem. 2000;69:153–163. doi: 10.1016/S0925-4005(00)00536-0. DOI
Lisboa P, Valsesia A, Colpo P, Rossi F, Mascini M. Nanopatterned surfaces for bio-detection. Anal Lett. 2010;43:1556–1571. doi: 10.1080/00032711003653916. DOI
Jian SR, Chen YT, Wang CF, Wen HC, Chiu WM, Yang CS. The influences of H-2 plasma pretreatment on the growth of vertically aligned carbon nanotubes by microwave plasma chemical vapor deposition. Nanoscale Res Lett. 2008;3:230–235. doi: 10.1007/s11671-008-9141-5. DOI
Klosova K, Hubalek J. Advanced electrodes with nanostructured surfaces for electrochemical microsensors. Phys Status Solidi A Appl Mater. 2008;205:1435–1438. doi: 10.1002/pssa.200778169. DOI
Zajickova L, Jasek O, Elias M, Synek P, Lazar L, Schneeweiss O, Hanzlikova R. Synthesis of carbon nanotubes by plasma-enhanced chemical vapor deposition in an atmospheric-pressure microwave torch. Pure Appl Chem. 2010;82:1259–1272. doi: 10.1351/PAC-CON-09-09-38. DOI
Kizek R, Masarik M, Kramer KJ, Potesil D, Bailey M, Howard JA, Klejdus B, Mikelova R, Adam V, Trnkova L, Jelen F. An analysis of avidin, biotin and their interaction at attomole levels by voltammetric and chromatographic techniques. Anal Bioanal Chem. 2005;381:1167–1178. doi: 10.1007/s00216-004-3027-x. PubMed DOI
Masarik M, Kizek R, Kramer KJ, Billova S, Brazdova M, Vacek J, Bailey M, Jelen F, Howard JA. Application of avidin-biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal Chem. 2003;75:2663–2669. doi: 10.1021/ac020788z. PubMed DOI
Petrlova J, Krizkova S, Supalkova V, Masarik M, Adam V, Havel L, Kramer KJ, Kizek R. The determination of avidin in genetically modified maize by voltammetric techniques. Plant Soil Environ. 2007;53:345–349.
Banks CE, Compton RG. Edge plane pyrolytic graphite electrodes in electroanalysis: an overview. Anal Sci. 2005;21:1263–1268. doi: 10.2116/analsci.21.1263. PubMed DOI
Erdem A. Nanomaterial-based electrochemical DNA sensing strategies. Talanta. 2007;74:318–325. doi: 10.1016/j.talanta.2007.10.012. PubMed DOI
Ji XB, Kadara RO, Krussma J, Chen QY, Banks CE. Understanding the physicoelectrochemical properties of carbon nanotubes: current state of the art. Electroanalysis. 2010;22:7–19.
Oliveira-Brett AM, Piedade JAP, Silva LA, Diculescu VC. Voltammetric determination of all DNA nucleotides. Anal Biochem. 2004;332:321–329. doi: 10.1016/j.ab.2004.06.021. PubMed DOI
Adam V, Huska D, Hubalek J, Kizek R. Easy to use and rapid isolation and detection of a viral nucleic acid by using paramagnetic microparticles and carbon nanotubes-based screen-printed electrodes. Microfluid Nanofluid. 2010;8:329–339. doi: 10.1007/s10404-009-0464-z. DOI
Huska D, Adam V, Babula P, Hrabeta J, Stiborova M, Eckschlager T, Trnkova L, Kizek R. Square-wave voltammetry as a tool for investigation of doxorubicin interactions with DNA isolated from neuroblastoma cells. Electroanalysis. 2009;21:487–494. doi: 10.1002/elan.200804429. DOI
Huska D, Hubalek J, Adam V, Vajtr D, Horna A, Trnkova L, Havel L, Kizek R. Automated nucleic acids isolation using paramagnetic microparticles coupled with electrochemical detection. Talanta. 2009;79:402–411. doi: 10.1016/j.talanta.2009.04.007. PubMed DOI
Influence of Magnetic Microparticles Isolation on Adenine Homonucleotides Structure