Alteration of the cardiac sympathetic innervation is modulated by duration of diabetes in female rats

. 2011 ; 2011 () : 835932. [epub] 20110717

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21792353

To evaluate the sympathetic innervation of the female diabetic heart, resting heart rate and sympathetic tone were assessed in vivo, and effect of tyramine on spontaneous beating rate, norepinephrine atrial concentrations, uptake, and release were determined in vitro in streptozotocin- (STZ-) treated rats and respective controls aged 3 months to 2 years. Resting bradycardia, decreased sympathetic tone, deceleration of spontaneous beating rate, and slightly declining carrier-mediated, but preserved exocytotic norepinephrine release from the atria were found in younger diabetic rats while the reactivity of the right atria to tyramine was not affected with age and disease duration. Diabetic two-year-old animals displayed symptoms of partial spontaneous recovery including normoglycemia, increased plasma insulin concentrations, fully recovered sympathetic tone, but putative change, in releasable norepinephrine tissue stores. Our data suggested that female diabetic heart exposed to long-lasting diabetic conditions seems to be more resistant to alteration in sympathetic innervation than the male one.

Zobrazit více v PubMed

Vinik AI, Freeman R, Erbas T. Diabetic autonomic neuropathy. Seminars in Neurology. 2003;23(4):365–372. PubMed

Bergner DW, Goldberger JJ. Diabetes mellitus and sudden cardiac death: what are the data? Cardiology Journal. 2010;17(2):117–129. PubMed

Hilsted J. Catecholamines and diabetic autonomic neuropathy. Diabetic Medicine. 1995;12(4):296–297. PubMed

Heyman E, Delamarche P, Berthon P, et al. Alteration insympathoadrenergic activity at rest andduring intense exercise despite normal aerobic fitness inlate pubertal adolescent girls with type 1diabetes. Diabetes and Metabolism. 2007;33(6):422–429. PubMed

Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiological Reviews. 1990;70(4):963–985. PubMed

Eisenhofer G, Esler MD, Cox HS, et al. Differences in the neuronal removal of circulating epinephrine and norepinephrine. Journal of Clinical Endocrinology and Metabolism. 1990;70(6):1710–1720. PubMed

Goldstein DS, Cannon RO, Quyyumi A, et al. Regional extraction of circulating norepinephrine, DOPA, and dihydroxyphenylglycol in humans. Journal of the Autonomic Nervous System. 1991;34(1):17–36. PubMed

Ganguly PK, Dhalla KS, Innes IR. Altered norepinephrine turnover and metabolism in diabetic cardiomyopathy. Circulation Research. 1986;59(6):684–693. PubMed

Wilson PWF. Diabetes mellitus and coronary heart disease. American Journal of Kidney Diseases. 1998;32(5, supplement 3):S89–S100. PubMed

Colhoun H. Coronary heart disease in women: why the disproportionate risk? Current Diabetes Reports. 2006;6(1):22–28. PubMed

Kuncová J, Švíglerová J, Tonar Z, Slavíková J. Heterogenous changes in neuropeptide Y, norepinephrine and epinephrine concentrations in the hearts of diabetic rats. Autonomic Neuroscience. 2005;121(1–2):7–15. PubMed

Garofano A, Czernichow P, Breant B. Impaired β-cell regeneration in perinatally malnourished rats: a study with STZ. The Federation of American Societies for Experimental Biology Journal. 2000;14(15):2611–2617. PubMed

Su EN, Alder VA, Yu DY, Yu PK, Cringle SJ, Yogesan K. Continued progression of retinopathy despite spontaneous recovery to normoglycemia in a long-term study of streptozotocin-induced diabetes in rats. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2000;238(2):163–173. PubMed

Rossini AA, Williams RM, Appel MC, Like AA. Sex differences in the multiple-dose streptozotocin model of diabetes. Endocrinology. 1978;103(4):1518–1520. PubMed

Leiter EH. Multiple low-dose streptozotocin-induced hyperglycemia and insulitis in C57BL mice: influence of inbred background, sex, and thymus. Proceedings of the National Academy of Sciences of the United States of America. 1982;79(2):630–634. PubMed PMC

Hicks KK, Seifen E, Stimers JR, Kennedy RH. Effects of streptozotocin-induced diabetes on heart rate, blood pressure and cardiac autonomic nervous control. Journal of the Autonomic Nervous System. 1998;69(1):21–30. PubMed

Alings AMW, Bouman LN. Electrophysiology of the ageing rabbit and cat sinoatrial node: a comparative study. European Heart Journal. 1993;14(9):1278–1288. PubMed

Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation. 2007;115(14):1921–1932. PubMed

Jones SA, Boyett MR, Lancaster MK. Declining into failure: the age-dependent loss of the L-type calcium channel within the sinoatrial node. Circulation. 2007;115(10):1183–1190. PubMed

Christou DD, Seals DR. Decreased maximal heart rate with aging is related to reduced β-adrenergic responsiveness but is largely explained by a reduction in intrinsic heart rate. Journal of Applied Physiology. 2008;105(1):24–29. PubMed PMC

Howarth FC, Nowotny N, Zilahi E, El Haj MA, Lei M. Altered expression of gap junction connexin proteins may partly underlie heart rhythm disturbances in the streptozotocin-induced diabetic rat heart. Molecular and Cellular Biochemistry. 2007;305(1–2):145–151. PubMed

Howarth CF, Al-Sharhan R, Al-Hammadi A, Qureshi MA. Effects of streptozotocin-induced diabetes on action potentials in the sinoatrial node compared with other regions of the rat heart. Molecular and Cellular Biochemistry. 2007;300(1–2):39–46. PubMed

Linnemann B, Janka HU. Prolonged QTc interval and elevated heart rate identify the type 2 diabetic patient at high risk for cardiovascular death. The Bremen diabetes study. Experimental and Clinical Endocrinology and Diabetes. 2003;111(4):215–222. PubMed

Larsen JA, Kadish AH. Effects of gender on cardiac arrhythmias. Journal of Cardiovascular Electrophysiology. 1998;9(6):655–667. PubMed

Pham TV, Rosen MR. Sex, hormones, and repolarization. Cardiovascular Research. 2002;53(3):740–751. PubMed

Cheng J. Evidences of the gender-related differences in cardiac repolarization and the underlying mechanisms in different animal species and human. Fundamental and Clinical Pharmacology. 2006;20(1):1–8. PubMed

Felten SY, Peterson RG, Shea PA, Besch HR, Jr., Felten DL. Effects of streptozotocin diabetes on the noradrenergic innervation of the rat heart: a longitudinal histofluorescence and neurochemical study. Brain Research Bulletin. 1982;8(6):593–607. PubMed

Yoshida T, Nishioka H, Nakamura Y, Kondo M. Reduced noradrenaline turnover in streptozotocin-induced diabetic rats. Diabetologia. 1985;28(9):692–696. PubMed

Akiyama N, Okumura K, Watanabe Y, et al. Altered acethlcholine and norepinephrine concentrations in diabetic rat hearts. Role of parasympathetic nervous system in diabetic cardiomyopathy. Diabetes. 1989;38(2):231–236. PubMed

Ganguly PK, Beamish RE, Dhalla KS, Innes IR, Dhalla NS. Norepinephrine storage, distribution, and release in diabetic cardiomyopathy. American Journal of Physiology. 1987;252(6):E734–E739. PubMed

Gando S, Hattori Y, Kanno M. Altered cardiac adrenergic neurotransmission in streptozotocin-induced diabetic rats. British Journal of Pharmacology. 1993;109(4):1276–1281. PubMed PMC

Snyder DL, Aloyo VJ, Wang W, Roberts J. Influence of age and dietary restriction on norepinephrine uptake into cardiac synaptosomes. Journal of Cardiovascular Pharmacology. 1998;32(6):896–901. PubMed

Takenouchi Y, Kobayashi T, Taguchi K, Matsumoto T, Kamata K. Gender differences in vascular reactivity of aortas from streptozotocin-induced diabetic mice. Biological and Pharmaceutical Bulletin. 2010;33(10):1692–1697. PubMed

Kuncová J, Slavíková J, Švíglerová J. Norepinephrine release in the heart atria of diabetic rats. General Physiology and Biophysics. 2003;22(3):397–410. PubMed

Trendelenburg U. Carrier-mediated outward transport of noradrenaline from adrenergic varicosities. Polish Journal of Pharmacology and Pharmacy. 1990;42(6):515–520. PubMed

Kiyono Y, Kajiyama S, Fujiwara H, Kanegawa N, Saji H. Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG . European Journal of Nuclear Medicine and Molecular Imaging. 2005;32(8):993–997. PubMed

Zugck C, Lossnitzer D, Backs J, Kristen A, Kinscherf R, Haass M. Increased cardiac norepinephrine release in spontaneously hypertensive rats: role of presynaptic alpha-2A adrenoceptors. Journal of Hypertension. 2003;21(7):1363–1369. PubMed

Richardt D, Dendorfer A, Tölg R, Dominiak P, Richardt G. Inhibition of nonexocytotic norepinephrine release by desipramine reduces myocardial infarction size. Canadian Journal of Physiology and Pharmacology. 2006;84(11):1185–1189. PubMed

Langeloh A, Bonisch H, Trendelenburg U. The mechanism of the 3H-noradrenaline releasing effect of various substrates of uptake1: multifactorial induction of outward transport. Naunyn-Schmiedeberg’s Archives of Pharmacology. 1987;336(6):602–610. PubMed

Levi G, Raiteri M. Carrier-mediated release of neurotransmitters. Trends in Neurosciences. 1993;16(10):415–419. PubMed

Javorková V, Mézešová L, Vlkovičová J, Vrbjar N. Influence of sub-chronic diabetes mellitus on functional properties of renal Na(+),K(+)-ATPase in both genders of rats. General Physiology and Biophysics. 2010;29(3):266–274. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...