Alteration of the cardiac sympathetic innervation is modulated by duration of diabetes in female rats
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21792353
PubMed Central
PMC3142701
DOI
10.1155/2011/835932
Knihovny.cz E-zdroje
- MeSH
- atropin farmakologie MeSH
- časové faktory MeSH
- experimentální diabetes mellitus chemicky indukované metabolismus patofyziologie MeSH
- inzulin metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metipranolol farmakologie MeSH
- pohlavní dimorfismus MeSH
- potkani Wistar MeSH
- srdce účinky léků inervace patofyziologie MeSH
- srdeční frekvence účinky léků fyziologie MeSH
- streptozocin MeSH
- sympatický nervový systém účinky léků patologie patofyziologie MeSH
- sympatolytika farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- atropin MeSH
- inzulin MeSH
- metipranolol MeSH
- streptozocin MeSH
- sympatolytika MeSH
To evaluate the sympathetic innervation of the female diabetic heart, resting heart rate and sympathetic tone were assessed in vivo, and effect of tyramine on spontaneous beating rate, norepinephrine atrial concentrations, uptake, and release were determined in vitro in streptozotocin- (STZ-) treated rats and respective controls aged 3 months to 2 years. Resting bradycardia, decreased sympathetic tone, deceleration of spontaneous beating rate, and slightly declining carrier-mediated, but preserved exocytotic norepinephrine release from the atria were found in younger diabetic rats while the reactivity of the right atria to tyramine was not affected with age and disease duration. Diabetic two-year-old animals displayed symptoms of partial spontaneous recovery including normoglycemia, increased plasma insulin concentrations, fully recovered sympathetic tone, but putative change, in releasable norepinephrine tissue stores. Our data suggested that female diabetic heart exposed to long-lasting diabetic conditions seems to be more resistant to alteration in sympathetic innervation than the male one.
Zobrazit více v PubMed
Vinik AI, Freeman R, Erbas T. Diabetic autonomic neuropathy. Seminars in Neurology. 2003;23(4):365–372. PubMed
Bergner DW, Goldberger JJ. Diabetes mellitus and sudden cardiac death: what are the data? Cardiology Journal. 2010;17(2):117–129. PubMed
Hilsted J. Catecholamines and diabetic autonomic neuropathy. Diabetic Medicine. 1995;12(4):296–297. PubMed
Heyman E, Delamarche P, Berthon P, et al. Alteration insympathoadrenergic activity at rest andduring intense exercise despite normal aerobic fitness inlate pubertal adolescent girls with type 1diabetes. Diabetes and Metabolism. 2007;33(6):422–429. PubMed
Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiological Reviews. 1990;70(4):963–985. PubMed
Eisenhofer G, Esler MD, Cox HS, et al. Differences in the neuronal removal of circulating epinephrine and norepinephrine. Journal of Clinical Endocrinology and Metabolism. 1990;70(6):1710–1720. PubMed
Goldstein DS, Cannon RO, Quyyumi A, et al. Regional extraction of circulating norepinephrine, DOPA, and dihydroxyphenylglycol in humans. Journal of the Autonomic Nervous System. 1991;34(1):17–36. PubMed
Ganguly PK, Dhalla KS, Innes IR. Altered norepinephrine turnover and metabolism in diabetic cardiomyopathy. Circulation Research. 1986;59(6):684–693. PubMed
Wilson PWF. Diabetes mellitus and coronary heart disease. American Journal of Kidney Diseases. 1998;32(5, supplement 3):S89–S100. PubMed
Colhoun H. Coronary heart disease in women: why the disproportionate risk? Current Diabetes Reports. 2006;6(1):22–28. PubMed
Kuncová J, Švíglerová J, Tonar Z, Slavíková J. Heterogenous changes in neuropeptide Y, norepinephrine and epinephrine concentrations in the hearts of diabetic rats. Autonomic Neuroscience. 2005;121(1–2):7–15. PubMed
Garofano A, Czernichow P, Breant B. Impaired β-cell regeneration in perinatally malnourished rats: a study with STZ. The Federation of American Societies for Experimental Biology Journal. 2000;14(15):2611–2617. PubMed
Su EN, Alder VA, Yu DY, Yu PK, Cringle SJ, Yogesan K. Continued progression of retinopathy despite spontaneous recovery to normoglycemia in a long-term study of streptozotocin-induced diabetes in rats. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2000;238(2):163–173. PubMed
Rossini AA, Williams RM, Appel MC, Like AA. Sex differences in the multiple-dose streptozotocin model of diabetes. Endocrinology. 1978;103(4):1518–1520. PubMed
Leiter EH. Multiple low-dose streptozotocin-induced hyperglycemia and insulitis in C57BL mice: influence of inbred background, sex, and thymus. Proceedings of the National Academy of Sciences of the United States of America. 1982;79(2):630–634. PubMed PMC
Hicks KK, Seifen E, Stimers JR, Kennedy RH. Effects of streptozotocin-induced diabetes on heart rate, blood pressure and cardiac autonomic nervous control. Journal of the Autonomic Nervous System. 1998;69(1):21–30. PubMed
Alings AMW, Bouman LN. Electrophysiology of the ageing rabbit and cat sinoatrial node: a comparative study. European Heart Journal. 1993;14(9):1278–1288. PubMed
Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation. 2007;115(14):1921–1932. PubMed
Jones SA, Boyett MR, Lancaster MK. Declining into failure: the age-dependent loss of the L-type calcium channel within the sinoatrial node. Circulation. 2007;115(10):1183–1190. PubMed
Christou DD, Seals DR. Decreased maximal heart rate with aging is related to reduced β-adrenergic responsiveness but is largely explained by a reduction in intrinsic heart rate. Journal of Applied Physiology. 2008;105(1):24–29. PubMed PMC
Howarth FC, Nowotny N, Zilahi E, El Haj MA, Lei M. Altered expression of gap junction connexin proteins may partly underlie heart rhythm disturbances in the streptozotocin-induced diabetic rat heart. Molecular and Cellular Biochemistry. 2007;305(1–2):145–151. PubMed
Howarth CF, Al-Sharhan R, Al-Hammadi A, Qureshi MA. Effects of streptozotocin-induced diabetes on action potentials in the sinoatrial node compared with other regions of the rat heart. Molecular and Cellular Biochemistry. 2007;300(1–2):39–46. PubMed
Linnemann B, Janka HU. Prolonged QTc interval and elevated heart rate identify the type 2 diabetic patient at high risk for cardiovascular death. The Bremen diabetes study. Experimental and Clinical Endocrinology and Diabetes. 2003;111(4):215–222. PubMed
Larsen JA, Kadish AH. Effects of gender on cardiac arrhythmias. Journal of Cardiovascular Electrophysiology. 1998;9(6):655–667. PubMed
Pham TV, Rosen MR. Sex, hormones, and repolarization. Cardiovascular Research. 2002;53(3):740–751. PubMed
Cheng J. Evidences of the gender-related differences in cardiac repolarization and the underlying mechanisms in different animal species and human. Fundamental and Clinical Pharmacology. 2006;20(1):1–8. PubMed
Felten SY, Peterson RG, Shea PA, Besch HR, Jr., Felten DL. Effects of streptozotocin diabetes on the noradrenergic innervation of the rat heart: a longitudinal histofluorescence and neurochemical study. Brain Research Bulletin. 1982;8(6):593–607. PubMed
Yoshida T, Nishioka H, Nakamura Y, Kondo M. Reduced noradrenaline turnover in streptozotocin-induced diabetic rats. Diabetologia. 1985;28(9):692–696. PubMed
Akiyama N, Okumura K, Watanabe Y, et al. Altered acethlcholine and norepinephrine concentrations in diabetic rat hearts. Role of parasympathetic nervous system in diabetic cardiomyopathy. Diabetes. 1989;38(2):231–236. PubMed
Ganguly PK, Beamish RE, Dhalla KS, Innes IR, Dhalla NS. Norepinephrine storage, distribution, and release in diabetic cardiomyopathy. American Journal of Physiology. 1987;252(6):E734–E739. PubMed
Gando S, Hattori Y, Kanno M. Altered cardiac adrenergic neurotransmission in streptozotocin-induced diabetic rats. British Journal of Pharmacology. 1993;109(4):1276–1281. PubMed PMC
Snyder DL, Aloyo VJ, Wang W, Roberts J. Influence of age and dietary restriction on norepinephrine uptake into cardiac synaptosomes. Journal of Cardiovascular Pharmacology. 1998;32(6):896–901. PubMed
Takenouchi Y, Kobayashi T, Taguchi K, Matsumoto T, Kamata K. Gender differences in vascular reactivity of aortas from streptozotocin-induced diabetic mice. Biological and Pharmaceutical Bulletin. 2010;33(10):1692–1697. PubMed
Kuncová J, Slavíková J, Švíglerová J. Norepinephrine release in the heart atria of diabetic rats. General Physiology and Biophysics. 2003;22(3):397–410. PubMed
Trendelenburg U. Carrier-mediated outward transport of noradrenaline from adrenergic varicosities. Polish Journal of Pharmacology and Pharmacy. 1990;42(6):515–520. PubMed
Kiyono Y, Kajiyama S, Fujiwara H, Kanegawa N, Saji H. Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG . European Journal of Nuclear Medicine and Molecular Imaging. 2005;32(8):993–997. PubMed
Zugck C, Lossnitzer D, Backs J, Kristen A, Kinscherf R, Haass M. Increased cardiac norepinephrine release in spontaneously hypertensive rats: role of presynaptic alpha-2A adrenoceptors. Journal of Hypertension. 2003;21(7):1363–1369. PubMed
Richardt D, Dendorfer A, Tölg R, Dominiak P, Richardt G. Inhibition of nonexocytotic norepinephrine release by desipramine reduces myocardial infarction size. Canadian Journal of Physiology and Pharmacology. 2006;84(11):1185–1189. PubMed
Langeloh A, Bonisch H, Trendelenburg U. The mechanism of the 3H-noradrenaline releasing effect of various substrates of uptake1: multifactorial induction of outward transport. Naunyn-Schmiedeberg’s Archives of Pharmacology. 1987;336(6):602–610. PubMed
Levi G, Raiteri M. Carrier-mediated release of neurotransmitters. Trends in Neurosciences. 1993;16(10):415–419. PubMed
Javorková V, Mézešová L, Vlkovičová J, Vrbjar N. Influence of sub-chronic diabetes mellitus on functional properties of renal Na(+),K(+)-ATPase in both genders of rats. General Physiology and Biophysics. 2010;29(3):266–274. PubMed