Comparative study of fungal cell disruption--scope and limitations of the methods

. 2011 Sep ; 56 (5) : 469-75. [epub] 20110908

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21901292

Simple and effective protocols of cell wall disruption were elaborated for tested fungal strains: Penicillium citrinum, Aspergillus fumigatus, Rhodotorula gracilis. Several techniques of cell wall disintegration were studied, including ultrasound disintegration, homogenization in bead mill, application of chemicals of various types, and osmotic shock. The release of proteins from fungal cells and the activity of a cytosolic enzyme, glucose-6-phosphate dehydrogenase, in the crude extracts were assayed to determine and compare the efficacy of each method. The presented studies allowed adjusting the particular method to a particular strain. The mechanical methods of disintegration appeared to be the most effective for the disintegration of yeast, R. gracilis, and filamentous fungi, A. fumigatus and P. citrinum. Ultrasonication and bead milling led to obtaining fungal cell-free extracts containing high concentrations of soluble proteins and active glucose-6-phosphate dehydrogenase systems.

Zobrazit více v PubMed

Ablain W, Soulier SH, Causeur D, Gautier M, Baron F. A simple and rapid method for the disruption of Staphylococcus aureus, optimized for quantitative reverse transcriptase applications: application for the examination of Camembert cheese. Dairy Sci Technol. 2009;89(1):69–81. doi: 10.1051/dst/2008034. DOI

Agrawal PB, Pandit AB. Isolation of α-glucosidase from Saccharomyces cerevisiae: cell disruption and adsorption. Biochem Eng J. 2003;15(1):37–45. doi: 10.1016/S1369-703X(02)00178-X. DOI

Al-Samarrai TH, Schmidt J. A simple method for extraction of fungal genomic DNA. Lett Appl Microbiol. 2000;30(1):53–56. doi: 10.1046/j.1472-765x.2000.00664.x. PubMed DOI

Anand H, Balasundaram B, Pandit AB, Harrison STL. The effect of chemical pretreatment combined with mechanical disruption on the extent of disruption and release of intracellular protein from E. coli. Biochem Eng J. 2007;35(2):166–173. doi: 10.1016/j.bej.2007.01.011. DOI

Balasundaram B, Pandit AB. Significance of location of enzymes on their release during microbial cell disruption. Biotechnol Bioeng. 2001;75(5):607–614. doi: 10.1002/bit.10072. PubMed DOI

Bergmeyer HU. Methods of enzymatic analysis, vol. 2. Weinheim: Verlag Chemie; 1983. pp. 204–205.

Borthwick KAJ, Coakley WT, McDonnell MB, Nowotny H, Benes E, Groschl M. Development of a novel compact sonicator for cell disruption. J Microbiol Meth. 2005;60(2):207–216. doi: 10.1016/j.mimet.2004.09.012. PubMed DOI

Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. Bioessays. 2006;28(8):799–808. doi: 10.1002/bies.20441. PubMed DOI

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Chaves-Lopez C, Lanciotti R, Serio A, Paparella A, Guerzoni E, Suzzi G. Effect of high pressure homogenization applied individually or in combination with other mild physical or chemical stresses on Bacillus cereus and Bacillus subtilis spore viability. Food Contr. 2009;20(8):691–695. doi: 10.1016/j.foodcont.2008.09.001. DOI

Chen YC, Chen LA, Chen SJ, Chang MC, Chen TL. A modified osmotic shock for periplasmic release of a recombinant creatinase from Escherichia coli. Biochem Eng J. 2004;19(3):211–215. doi: 10.1016/j.bej.2004.03.001. DOI

Chen L, Liu W, Hu X, Huang K, Wu J, Zhang Q. Citrinin derivatives from the marine-derived fungus Penicillium citrinum. Chem Pharm Bull. 2011;59(4):515–517. doi: 10.1248/cpb.59.515. PubMed DOI

Corrado M, Rodrigues KF. Antimicrobial evaluation of fungal extracts produced by endophytic strains of Phomopsis sp. J Basic Microbiol. 2004;44(2):157–160. doi: 10.1002/jobm.200310341. PubMed DOI

Dean CR, Ward OP. The use of EDTA or polymyxin with lysozyme for the recovery of intracellular products from E. coli. Enzym Microb Tech. 1992;6(2):133–138.

Debeaupuis JP, Sarfati J, Chazalet V, Latge JP. Genetic diversity among clinical and environmental isolates of Aspergillus fumigatus. Infect Immun. 1997;65(8):3080–3085. PubMed PMC

Denis C, Morancais M, Gaudin P, Fleurence J. Effect of enzymatic digestion on thallus degradation and extraction of hydrosoluble compounds from Grateloupia turuturu. Bot Mar. 2009;52(3):262–267. doi: 10.1515/BOT.2009.035. DOI

Denning DW. Invasive aspergillosis. Clin Infect Dis. 1998;26(4):781–805. doi: 10.1086/513943. PubMed DOI

Doolan IA, Wilkinson MG. Comparison of the effects of various attenuation methods on cell permeability and accessibility of intracellular enzymes in Lactococcus lactis strains. Int Dairy J. 2009;19(4):215–221. doi: 10.1016/j.idairyj.2008.11.003. DOI

Doucha J, Livansky K. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol. 2008;81(3):431–440. doi: 10.1007/s00253-008-1660-6. PubMed DOI

Du L, Zhang G, Zhu T, Ai J, Gu Q. Novel carbon-bridged citrinin dimers from a volcano ash-derived fungus Penicillium citrinum and their cytotoxic and cell cycle arrest activities. Tetrahedron. 2010;66(47):9286–9290.

Engler CR. Disruption of microbial cells in comprehensive biotechnology. In: Moo-Young M, Cooney CL, editors. Comprehensive biotechnology. UK: Pergamon; 1985. pp. 305–324.

Firon A, Lesage G, Bussey H. Integrative studies put cell wall synthesis on the yeast functional map. Curr Opin Microbiol. 2004;7:617–623. doi: 10.1016/j.mib.2004.10.015. PubMed DOI

Fonesca LP, Cabral JMS. Penicillin acylase release from Escherichia coli cells by mechanical cell disruption and permeabilization. J Chem Technol Biotechnol. 2002;77(2):159–167. doi: 10.1002/jctb.541. DOI

Garcia FAP. Cell wall disruption. In: Kennedy JF, Cabral JMS, editors. Recovery process for biological materials. New York: Wiley; 1993. pp. 47–69.

Geciova J, Bury D, Jelen P. Methods for disruption of microbial cells for potential use in the dairy industry—a review. Int Dairy J. 2002;12(6):541–553. doi: 10.1016/S0958-6946(02)00038-9. DOI

Gogate PR, Kabadi AM. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem Eng J. 2009;44(1):60–72. doi: 10.1016/j.bej.2008.10.006. DOI

Harrison STL. Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv. 1991;9(2):217–240. doi: 10.1016/0734-9750(91)90005-G. PubMed DOI

Heim A, Kamionowska U, Solecki M. The effect of microorganism concentration on yeast cell disruption in a bead mill. J Food Eng. 2007;83(1):121–128. doi: 10.1016/j.jfoodeng.2007.02.047. DOI

Hetherington PJ, Follows M, Dunnill P, Lilly MD. Release of protein from baker’s yeast (Saccharomyces cerevisiae) by disruption in an industrial homogenizer. Trans Inst Chem Eng. 1971;49:142–148.

Ho CW, Tan WS, Yap WB, Ling TC, Tey BT. Comparative evaluation of different cell disruption methods for the release of recombinant hepatitis B core antigen from Escherichia coli. Biotechnol Bioproc Eng. 2008;13(5):577–583. doi: 10.1007/s12257-008-0020-9. DOI

Joubert Y, Fleurence J. Simultaneous extraction of proteins and DNA by an enzymatic treatment of the cell wall of Palmaria palmate (Rhodophyta) J Appl Phycol. 2008;20(1):55–61. doi: 10.1007/s10811-007-9180-9. DOI

Kelly WJ, Muske KR. Optimal operation of high-pressure homogenization for intracellular product recovery. Bioproc Biosystems Eng. 2004;27(1):25–37. doi: 10.1007/s00449-004-0378-9. PubMed DOI

Keshavarz-Moore E, Hoare M, Dunnill P. Disruption of baker’s yeast in a high-pressure homogenizer. Enzym Microb Tech. 1990;12(3):764–770. doi: 10.1016/0141-0229(90)90149-K. DOI

Kitamura K. Re-examination of zymolase purification. Agric Biol Chem. 1982;446:963–969. doi: 10.1271/bbb1961.46.963. DOI

Klis FM, Boorsma A, De Groot PWJ. Cell wall construction in Saccharomyces cerevisiae. Yeast. 2006;23:185–202. doi: 10.1002/yea.1349. PubMed DOI

Kuan I, Liao R, Hsieh H, Chen K, Yu C. Properties of Rhodotorula gracilis D-amino acid oxidase immobilized on magnetic beads through His-Tag. J Biosci Bioeng. 2008;105(2):110–115. doi: 10.1263/jbb.105.110. PubMed DOI

Kuboi R, Umakoshi H, Takagi N, Komasawa I. Optimal disruption methods for the selective recovery of β-galactosidase from E. coli. J Ferment Bioeng. 1995;79(4):335–341. doi: 10.1016/0922-338X(95)93991-R. DOI

Leuko S, Goh F, Ibanez-Peral R, Burns BP, Walter MR, Neilan BA. Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles. 2008;12(2):301–308. doi: 10.1007/s00792-007-0124-8. PubMed DOI

Lim JS, Lee JH, Kang SW, Park SW, Kim SW. Studies on production and physical properties of neo-FOS produced by co-immobilized Penicillium citrinum and neo-fructosyltransferase. Eur Food Res Tech. 2007;225(3–4):457–462. doi: 10.1007/s00217-006-0440-8. DOI

Lim CSY, Tung CH, Rosli R, Chong PP. An alternative Candida spp. cell wall disruption method using a basic sorbitol lysis buffer and glass beads. J Microbiol Meth. 2008;75(3):576–578. doi: 10.1016/j.mimet.2008.07.026. PubMed DOI

Malmstrom J, Christopherson C, Frisvad JC. secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. Phytochemistry. 2000;54(3):301–309. doi: 10.1016/S0031-9422(00)00106-0. PubMed DOI

Middelberg APJ. Process-scale disruption of microorganisms. Biotechnol Adv. 1995;13(3):491–551. doi: 10.1016/0734-9750(95)02007-P. PubMed DOI

Ren X, Yu D, Han S, Feng Y. Thermolysis of recombinant Escherichia coli for recovering a thermostable enzyme. Biochem Eng J. 2007;33(1):94–98. doi: 10.1016/j.bej.2006.09.017. DOI

Ren X, Yu D, Yu L, Gao G, Siping H, Feng Y. A new study of cell disruption to release recombinant thermostable enzyme from Escherichia coli by thermolysis. J Biotechnol. 2007;129(4):668–673. doi: 10.1016/j.jbiotec.2007.01.038. PubMed DOI

Ricci-Silva ME, Vitolo M, Abrahao-Neto J. Protein and glucose 6-phosphate dehydrogenase releasing from baker’s yeast cells disrupted by a vertical bead mill. Process Biochem. 2000;35(8):831–835. doi: 10.1016/S0032-9592(99)00151-X. DOI

Sauer T, Robinson CW, Glick BRF. Disruption of native and recombinant E. coli in high pressure homogenizer. Biotechnol Bioeng. 1989;33(10):1330–1342. doi: 10.1002/bit.260331016. PubMed DOI

Savov V, Kujumdzieva A, Rasheva T. Disintegration of microbial cells. In: Kujumdzieva A, editor. Vocational training in biotechnology innovation and environment protection. Sofia: National Bank for Industrial Microorganisms and Cell Cultures; 2001. pp. 7–30.

Shynkaryk MV, Lebovka NI, Lanoiselle JL, Nonus M, Bedel-Clotour C, Vorobiev E. Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae) J Food Eng. 2009;92(2):189–195. doi: 10.1016/j.jfoodeng.2008.10.041. DOI

Singh S, Gogoi BK, Bezbaruah RL. Racemic resolution of some dl-amino acids using Aspergillus fumigatusl-amino acid oxidase. Curr Microbiol. 2011;63(1):94–99. doi: 10.1007/s00284-011-9955-8. PubMed DOI

Taskova RM, Zorn H, Krings U, Bouws H, Berger RG. A comparison of cell wall disruption techniques for the isolation of intracellular metabolites from Pleurotus and Lepista sp. Zeitschrift fur Naturforschung C-A J Biosci. 2006;61(5–6):347–350. PubMed

Taubert J, Krings U, Berger RG. A comparative study on the disintegration of filamentous fungi. J Microbiol Meth. 2000;42(3):225–232. doi: 10.1016/S0167-7012(00)00194-9. PubMed DOI

Tkac J, Vostiar I, Mandenius CF. Evaluations of disruption methods for the release of intracellular recombinant protein from Escherichia coli for analytical purposes. Biotechnol Appl Biochem. 2004;40(1):83–88. doi: 10.1042/BA20030143. PubMed DOI

Vijayalakshmi G, Shobha B, Vanajakshi V, Divakar S, Manohar B. Response surface methodology for optimization of growth parameters for the production of carotenoids by a mutant strain of Rhodotorula gracilis. Eur Food Res Technol. 2001;213(3):234–239. doi: 10.1007/s002170100356. DOI

Yasotha K, Aroua MK, Ramachandran KB, Tan IKP. Recovery of medium-chain-length polyhydroxyalkanoates (PHAs) through enzymatic digestion treatments and ultrafiltration. Biochem Eng J. 2006;30(2):206–268.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...