Comparative study of fungal cell disruption--scope and limitations of the methods
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
21901292
PubMed Central
PMC3189342
DOI
10.1007/s12223-011-0069-2
Knihovny.cz E-zdroje
- MeSH
- Aspergillus fumigatus účinky léků enzymologie MeSH
- buněčná stěna účinky léků MeSH
- buněčné extrakty chemie MeSH
- detergenty farmakologie MeSH
- fungální proteiny analýza metabolismus MeSH
- glukosa-6-fosfátdehydrogenasa analýza metabolismus MeSH
- osmotický tlak MeSH
- Penicillium účinky léků enzymologie MeSH
- Rhodotorula účinky léků enzymologie MeSH
- vibrace ultrazvukové MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- buněčné extrakty MeSH
- detergenty MeSH
- fungální proteiny MeSH
- glukosa-6-fosfátdehydrogenasa MeSH
Simple and effective protocols of cell wall disruption were elaborated for tested fungal strains: Penicillium citrinum, Aspergillus fumigatus, Rhodotorula gracilis. Several techniques of cell wall disintegration were studied, including ultrasound disintegration, homogenization in bead mill, application of chemicals of various types, and osmotic shock. The release of proteins from fungal cells and the activity of a cytosolic enzyme, glucose-6-phosphate dehydrogenase, in the crude extracts were assayed to determine and compare the efficacy of each method. The presented studies allowed adjusting the particular method to a particular strain. The mechanical methods of disintegration appeared to be the most effective for the disintegration of yeast, R. gracilis, and filamentous fungi, A. fumigatus and P. citrinum. Ultrasonication and bead milling led to obtaining fungal cell-free extracts containing high concentrations of soluble proteins and active glucose-6-phosphate dehydrogenase systems.
Zobrazit více v PubMed
Ablain W, Soulier SH, Causeur D, Gautier M, Baron F. A simple and rapid method for the disruption of Staphylococcus aureus, optimized for quantitative reverse transcriptase applications: application for the examination of Camembert cheese. Dairy Sci Technol. 2009;89(1):69–81. doi: 10.1051/dst/2008034. DOI
Agrawal PB, Pandit AB. Isolation of α-glucosidase from Saccharomyces cerevisiae: cell disruption and adsorption. Biochem Eng J. 2003;15(1):37–45. doi: 10.1016/S1369-703X(02)00178-X. DOI
Al-Samarrai TH, Schmidt J. A simple method for extraction of fungal genomic DNA. Lett Appl Microbiol. 2000;30(1):53–56. doi: 10.1046/j.1472-765x.2000.00664.x. PubMed DOI
Anand H, Balasundaram B, Pandit AB, Harrison STL. The effect of chemical pretreatment combined with mechanical disruption on the extent of disruption and release of intracellular protein from E. coli. Biochem Eng J. 2007;35(2):166–173. doi: 10.1016/j.bej.2007.01.011. DOI
Balasundaram B, Pandit AB. Significance of location of enzymes on their release during microbial cell disruption. Biotechnol Bioeng. 2001;75(5):607–614. doi: 10.1002/bit.10072. PubMed DOI
Bergmeyer HU. Methods of enzymatic analysis, vol. 2. Weinheim: Verlag Chemie; 1983. pp. 204–205.
Borthwick KAJ, Coakley WT, McDonnell MB, Nowotny H, Benes E, Groschl M. Development of a novel compact sonicator for cell disruption. J Microbiol Meth. 2005;60(2):207–216. doi: 10.1016/j.mimet.2004.09.012. PubMed DOI
Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. Bioessays. 2006;28(8):799–808. doi: 10.1002/bies.20441. PubMed DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Chaves-Lopez C, Lanciotti R, Serio A, Paparella A, Guerzoni E, Suzzi G. Effect of high pressure homogenization applied individually or in combination with other mild physical or chemical stresses on Bacillus cereus and Bacillus subtilis spore viability. Food Contr. 2009;20(8):691–695. doi: 10.1016/j.foodcont.2008.09.001. DOI
Chen YC, Chen LA, Chen SJ, Chang MC, Chen TL. A modified osmotic shock for periplasmic release of a recombinant creatinase from Escherichia coli. Biochem Eng J. 2004;19(3):211–215. doi: 10.1016/j.bej.2004.03.001. DOI
Chen L, Liu W, Hu X, Huang K, Wu J, Zhang Q. Citrinin derivatives from the marine-derived fungus Penicillium citrinum. Chem Pharm Bull. 2011;59(4):515–517. doi: 10.1248/cpb.59.515. PubMed DOI
Corrado M, Rodrigues KF. Antimicrobial evaluation of fungal extracts produced by endophytic strains of Phomopsis sp. J Basic Microbiol. 2004;44(2):157–160. doi: 10.1002/jobm.200310341. PubMed DOI
Dean CR, Ward OP. The use of EDTA or polymyxin with lysozyme for the recovery of intracellular products from E. coli. Enzym Microb Tech. 1992;6(2):133–138.
Debeaupuis JP, Sarfati J, Chazalet V, Latge JP. Genetic diversity among clinical and environmental isolates of Aspergillus fumigatus. Infect Immun. 1997;65(8):3080–3085. PubMed PMC
Denis C, Morancais M, Gaudin P, Fleurence J. Effect of enzymatic digestion on thallus degradation and extraction of hydrosoluble compounds from Grateloupia turuturu. Bot Mar. 2009;52(3):262–267. doi: 10.1515/BOT.2009.035. DOI
Denning DW. Invasive aspergillosis. Clin Infect Dis. 1998;26(4):781–805. doi: 10.1086/513943. PubMed DOI
Doolan IA, Wilkinson MG. Comparison of the effects of various attenuation methods on cell permeability and accessibility of intracellular enzymes in Lactococcus lactis strains. Int Dairy J. 2009;19(4):215–221. doi: 10.1016/j.idairyj.2008.11.003. DOI
Doucha J, Livansky K. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol. 2008;81(3):431–440. doi: 10.1007/s00253-008-1660-6. PubMed DOI
Du L, Zhang G, Zhu T, Ai J, Gu Q. Novel carbon-bridged citrinin dimers from a volcano ash-derived fungus Penicillium citrinum and their cytotoxic and cell cycle arrest activities. Tetrahedron. 2010;66(47):9286–9290.
Engler CR. Disruption of microbial cells in comprehensive biotechnology. In: Moo-Young M, Cooney CL, editors. Comprehensive biotechnology. UK: Pergamon; 1985. pp. 305–324.
Firon A, Lesage G, Bussey H. Integrative studies put cell wall synthesis on the yeast functional map. Curr Opin Microbiol. 2004;7:617–623. doi: 10.1016/j.mib.2004.10.015. PubMed DOI
Fonesca LP, Cabral JMS. Penicillin acylase release from Escherichia coli cells by mechanical cell disruption and permeabilization. J Chem Technol Biotechnol. 2002;77(2):159–167. doi: 10.1002/jctb.541. DOI
Garcia FAP. Cell wall disruption. In: Kennedy JF, Cabral JMS, editors. Recovery process for biological materials. New York: Wiley; 1993. pp. 47–69.
Geciova J, Bury D, Jelen P. Methods for disruption of microbial cells for potential use in the dairy industry—a review. Int Dairy J. 2002;12(6):541–553. doi: 10.1016/S0958-6946(02)00038-9. DOI
Gogate PR, Kabadi AM. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem Eng J. 2009;44(1):60–72. doi: 10.1016/j.bej.2008.10.006. DOI
Harrison STL. Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv. 1991;9(2):217–240. doi: 10.1016/0734-9750(91)90005-G. PubMed DOI
Heim A, Kamionowska U, Solecki M. The effect of microorganism concentration on yeast cell disruption in a bead mill. J Food Eng. 2007;83(1):121–128. doi: 10.1016/j.jfoodeng.2007.02.047. DOI
Hetherington PJ, Follows M, Dunnill P, Lilly MD. Release of protein from baker’s yeast (Saccharomyces cerevisiae) by disruption in an industrial homogenizer. Trans Inst Chem Eng. 1971;49:142–148.
Ho CW, Tan WS, Yap WB, Ling TC, Tey BT. Comparative evaluation of different cell disruption methods for the release of recombinant hepatitis B core antigen from Escherichia coli. Biotechnol Bioproc Eng. 2008;13(5):577–583. doi: 10.1007/s12257-008-0020-9. DOI
Joubert Y, Fleurence J. Simultaneous extraction of proteins and DNA by an enzymatic treatment of the cell wall of Palmaria palmate (Rhodophyta) J Appl Phycol. 2008;20(1):55–61. doi: 10.1007/s10811-007-9180-9. DOI
Kelly WJ, Muske KR. Optimal operation of high-pressure homogenization for intracellular product recovery. Bioproc Biosystems Eng. 2004;27(1):25–37. doi: 10.1007/s00449-004-0378-9. PubMed DOI
Keshavarz-Moore E, Hoare M, Dunnill P. Disruption of baker’s yeast in a high-pressure homogenizer. Enzym Microb Tech. 1990;12(3):764–770. doi: 10.1016/0141-0229(90)90149-K. DOI
Kitamura K. Re-examination of zymolase purification. Agric Biol Chem. 1982;446:963–969. doi: 10.1271/bbb1961.46.963. DOI
Klis FM, Boorsma A, De Groot PWJ. Cell wall construction in Saccharomyces cerevisiae. Yeast. 2006;23:185–202. doi: 10.1002/yea.1349. PubMed DOI
Kuan I, Liao R, Hsieh H, Chen K, Yu C. Properties of Rhodotorula gracilis D-amino acid oxidase immobilized on magnetic beads through His-Tag. J Biosci Bioeng. 2008;105(2):110–115. doi: 10.1263/jbb.105.110. PubMed DOI
Kuboi R, Umakoshi H, Takagi N, Komasawa I. Optimal disruption methods for the selective recovery of β-galactosidase from E. coli. J Ferment Bioeng. 1995;79(4):335–341. doi: 10.1016/0922-338X(95)93991-R. DOI
Leuko S, Goh F, Ibanez-Peral R, Burns BP, Walter MR, Neilan BA. Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles. 2008;12(2):301–308. doi: 10.1007/s00792-007-0124-8. PubMed DOI
Lim JS, Lee JH, Kang SW, Park SW, Kim SW. Studies on production and physical properties of neo-FOS produced by co-immobilized Penicillium citrinum and neo-fructosyltransferase. Eur Food Res Tech. 2007;225(3–4):457–462. doi: 10.1007/s00217-006-0440-8. DOI
Lim CSY, Tung CH, Rosli R, Chong PP. An alternative Candida spp. cell wall disruption method using a basic sorbitol lysis buffer and glass beads. J Microbiol Meth. 2008;75(3):576–578. doi: 10.1016/j.mimet.2008.07.026. PubMed DOI
Malmstrom J, Christopherson C, Frisvad JC. secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. Phytochemistry. 2000;54(3):301–309. doi: 10.1016/S0031-9422(00)00106-0. PubMed DOI
Middelberg APJ. Process-scale disruption of microorganisms. Biotechnol Adv. 1995;13(3):491–551. doi: 10.1016/0734-9750(95)02007-P. PubMed DOI
Ren X, Yu D, Han S, Feng Y. Thermolysis of recombinant Escherichia coli for recovering a thermostable enzyme. Biochem Eng J. 2007;33(1):94–98. doi: 10.1016/j.bej.2006.09.017. DOI
Ren X, Yu D, Yu L, Gao G, Siping H, Feng Y. A new study of cell disruption to release recombinant thermostable enzyme from Escherichia coli by thermolysis. J Biotechnol. 2007;129(4):668–673. doi: 10.1016/j.jbiotec.2007.01.038. PubMed DOI
Ricci-Silva ME, Vitolo M, Abrahao-Neto J. Protein and glucose 6-phosphate dehydrogenase releasing from baker’s yeast cells disrupted by a vertical bead mill. Process Biochem. 2000;35(8):831–835. doi: 10.1016/S0032-9592(99)00151-X. DOI
Sauer T, Robinson CW, Glick BRF. Disruption of native and recombinant E. coli in high pressure homogenizer. Biotechnol Bioeng. 1989;33(10):1330–1342. doi: 10.1002/bit.260331016. PubMed DOI
Savov V, Kujumdzieva A, Rasheva T. Disintegration of microbial cells. In: Kujumdzieva A, editor. Vocational training in biotechnology innovation and environment protection. Sofia: National Bank for Industrial Microorganisms and Cell Cultures; 2001. pp. 7–30.
Shynkaryk MV, Lebovka NI, Lanoiselle JL, Nonus M, Bedel-Clotour C, Vorobiev E. Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae) J Food Eng. 2009;92(2):189–195. doi: 10.1016/j.jfoodeng.2008.10.041. DOI
Singh S, Gogoi BK, Bezbaruah RL. Racemic resolution of some dl-amino acids using Aspergillus fumigatusl-amino acid oxidase. Curr Microbiol. 2011;63(1):94–99. doi: 10.1007/s00284-011-9955-8. PubMed DOI
Taskova RM, Zorn H, Krings U, Bouws H, Berger RG. A comparison of cell wall disruption techniques for the isolation of intracellular metabolites from Pleurotus and Lepista sp. Zeitschrift fur Naturforschung C-A J Biosci. 2006;61(5–6):347–350. PubMed
Taubert J, Krings U, Berger RG. A comparative study on the disintegration of filamentous fungi. J Microbiol Meth. 2000;42(3):225–232. doi: 10.1016/S0167-7012(00)00194-9. PubMed DOI
Tkac J, Vostiar I, Mandenius CF. Evaluations of disruption methods for the release of intracellular recombinant protein from Escherichia coli for analytical purposes. Biotechnol Appl Biochem. 2004;40(1):83–88. doi: 10.1042/BA20030143. PubMed DOI
Vijayalakshmi G, Shobha B, Vanajakshi V, Divakar S, Manohar B. Response surface methodology for optimization of growth parameters for the production of carotenoids by a mutant strain of Rhodotorula gracilis. Eur Food Res Technol. 2001;213(3):234–239. doi: 10.1007/s002170100356. DOI
Yasotha K, Aroua MK, Ramachandran KB, Tan IKP. Recovery of medium-chain-length polyhydroxyalkanoates (PHAs) through enzymatic digestion treatments and ultrafiltration. Biochem Eng J. 2006;30(2):206–268.