Liver and muscle hemojuvelin are differently glycosylated
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21936923
PubMed Central
PMC3190341
DOI
10.1186/1471-2091-12-52
PII: 1471-2091-12-52
Knihovny.cz E-zdroje
- MeSH
- extracelulární prostor metabolismus MeSH
- genový knockout MeSH
- glykopeptidasa metabolismus MeSH
- glykosylace MeSH
- GPI-vázané proteiny MeSH
- játra cytologie metabolismus MeSH
- membránové proteiny nedostatek genetika izolace a purifikace metabolismus MeSH
- myši MeSH
- neuraminidasa metabolismus MeSH
- orgánová specificita MeSH
- protein hemochromatózy MeSH
- svaly cytologie metabolismus MeSH
- transport proteinů MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykopeptidasa MeSH
- GPI-vázané proteiny MeSH
- HJV protein, mouse MeSH Prohlížeč
- membránové proteiny MeSH
- neuraminidasa MeSH
- protein hemochromatózy MeSH
BACKGROUND: Hemojuvelin (HJV) is one of essential components for expression of hepcidin, a hormone which regulates iron transport. HJV is mainly expressed in muscle and liver, and processing of HJV in both tissues is similar. However, hepcidin is expressed in liver but not in muscle and the role of the muscle HJV is yet to be established. Our preliminary analyses of mouse tissue HJV showed that the apparent molecular masses of HJV peptides are different in liver (50 kDa monomer and 35 and 20 kDa heterodimer fragments) and in muscle (55 kDa monomer and a 34 kDa possible large fragment of heterodimer). One possible explanation is glycosylation which could lead to difference in molecular mass. RESULTS: We investigated glycosylation of HJV in both liver and muscle tissue from mice. PNGase F treatment revealed that the HJV large fragments of liver and muscle were digested to peptides with similar masses, 30 and 31 kDa, respectively, and the liver 20 kDa small fragment of heterodimer was digested to 16 kDa, while the 50 kDa liver and 55 kDa muscle monomers were reduced to 42 and 48 kDa, respectively. Endo H treatment produced distinct digestion profiles of the large fragment: a small fraction of the 35 kDa peptide was reduced to 33 kDa in liver, while the majority of the 34 kDa peptide was digested to 33 kDa and a very small fraction to 31 kDa in muscle. In addition, liver HJV was found to be neuraminidase-sensitive but its muscle counterpart was neuraminidase-resistant. CONCLUSIONS: Our results indicate that different oligosaccharides are attached to liver and muscle HJV peptides, which may contribute to different functions of HJV in the two tissues.
Zobrazit více v PubMed
De Domenico I, McVey Ward D, Kaplan J. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol. 2008;9:72–81. doi: 10.1038/nrm2295. PubMed DOI
Kune-Hashimoto R, Kuninger D, Nili M, Rotwein P. Selective binding of RGMc/hemojuvelin, a key protein in systemic iron metabolism, to BMP-2 and neogenin. Amer J Physiol. 2008;294:C994–C1003. doi: 10.1152/ajpcell.00563.2007. PubMed DOI
Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8:502–511. doi: 10.1016/j.cmet.2008.09.012. PubMed DOI PMC
Andriopoulos B Jr, Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, Knutson MD, Pietrangelo A, Vukicevic S, Lin HY, Babitt JL. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Na Genet. 2009;41:482–487. doi: 10.1038/ng.335. PubMed DOI PMC
Zhang AS, Yang F, Wang J, Tsukamoto H, Enns CA. Hemojuvelin/neogenin interaction is required for bone morphogenic protein-4-induced hepcidin expression. J Biol Chem. 2009;284:22580–22589. doi: 10.1074/jbc.M109.027318. PubMed DOI PMC
Lin L, Goldberg YP, Ganz T. Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin. Blood. 2005;106:2884–2889. doi: 10.1182/blood-2005-05-1845. PubMed DOI
Kuninger D, Kune-Hashimoto R, Kuzmickas R, Rotwein P. Complex biosynthesis of the muscle-enriched iron regulator RGMc. J Cell Sci. 2006;119:3273–3283. doi: 10.1242/jcs.03074. PubMed DOI
Kuninger D, Kune-Hashimoto R, Nili M, Rotwein P. Pro-protein convertases control the maturation and processing of the iron-regulatory protein, RGMc/hemojuvelin. BMC Biochem. 2008;9:9. doi: 10.1186/1471-2091-9-9. PubMed DOI PMC
Lin L, Nemeth E, Goodnough JB, Thapa DR, Gabayan V, Ganz T. Soluble hemojuvelin is released by proprotein convertase-mediated cleavage at a conserved polybasic RNRR site. Blood Cells Mol Dis. 2008;40:122–131. doi: 10.1016/j.bcmd.2007.06.023. PubMed DOI PMC
Silvestri L, Pagani A, Camaschella C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood. 2008;111:924–931. doi: 10.1182/blood-2007-07-100677. PubMed DOI
Zhang AS, Yang F, Meyer K, Hernandez C, Chapman-Arvedson T, Bjorkman PJ, Enns C A. Neogenin-mediated hemojuvelin shedding occurs after hemojuvelin traffics to the plasma membrane. J Biol Chem. 2008;283:17494–17502. doi: 10.1074/jbc.M710527200. PubMed DOI PMC
Krijt J, Fujikura Y, Sefc L, Vokurka M, Hlobenova T, Necas E. Hepcidin downregulation by repeated bleeding is not mediated by soluble hemojuvelin. Physiol Res. 2010;59:53–59. PubMed
Maxson J, E Enns CA, Zhang A S. Processing of hemojuvelin requires retrograde trafficking to the Golgi in HepG2 cells. Blood. 2009;113:1786–1793. doi: 10.1182/blood-2008-08-174565. PubMed DOI PMC
Monnier PP, Sierra A, Macchi P, Deitinghoff L, Andersen JS, Mann M, Flad M, Homberger MR, Stahl B, Bonhoeffer F, Mueller B K. RGM is a repulsive guidance molecule for retinal axoms. Nature. 2002;419:392–395. doi: 10.1038/nature01041. PubMed DOI
Matsunaga E, Chédotal A. Repulsive guidance molecule/neogenin: a novel ligand-receptor system playing multiple roles in neural development. Dev Growth Differ. 2004;46:481–486. doi: 10.1111/j.1440-169x.2004.00768.x. PubMed DOI
Halbrooks PJ, Ding R, Wozney JM, Bain G. Role of RGM coreceptors in bone morphogenetic protein signaling. J Mol Signal. 2007;2:4. doi: 10.1186/1750-2187-2-4. PubMed DOI PMC
Schmidtmer J, Engelkamp D. Isolation and expression pattern of three mouse homologues of chick Rgm. Gene Expr Patterns. 2004;4:105–110. doi: 10.1016/S1567-133X(03)00144-3. PubMed DOI
Oldekamp J, Kramer N, Alvarez-Bolado G, Skutella T. Expression pattern of the repulsive guidance molecules RGM A, B and C during mouse development. Gene Expr Patterns. 2004;4:283–288. doi: 10.1016/j.modgep.2003.11.008. PubMed DOI
Niederkofler V, Salie R, Sigrist M, Arber S. Repulsive guidance molecule (RGM) gene function is required for neural tube closure but not retinal topography in the mouse visual system. J Neurosci. 2004;24:808–818. doi: 10.1523/JNEUROSCI.4610-03.2004. PubMed DOI PMC
Zhang AS, West AP Jr, Wyman AE, Bjorkman PJ, Enns C A. Interaction of hemojuvelin with neogenin results in iron accumulation in human embryonic kidney 293 cells. J Biol Chem. 2005;280:33885–33894. doi: 10.1074/jbc.M506207200. PubMed DOI
Brasse-Lagnel C, Poli M, Lesueur C, Grandchamp B, Lavoinne A, Beaumont C, Bekin S. Immunoassay for human serum hemojuvelin. Haematologica. 2010;95:2031–2037. doi: 10.3324/haematol.2010.022129. PubMed DOI PMC
Severyn CJ, Rotwein P. Conserved proximal promoter elements control repulsive guidance molecule c/hemojuvelin gene transcription in skeletal muscle. Genomics. 2010;96:342–351. doi: 10.1016/j.ygeno.2010.09.001. PubMed DOI PMC
Ohtsubo K, Martin JD. Glycosylation in Cellular Mechanisms of Health and Disease. Cell. 2006;126:855–867. doi: 10.1016/j.cell.2006.08.019. PubMed DOI
Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291:2364–2369. doi: 10.1126/science.291.5512.2364. PubMed DOI
Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem. 2004;73:1019–1049. doi: 10.1146/annurev.biochem.73.011303.073752. PubMed DOI
Zachara NE, Hart GW. Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta. 2006;1761:599–617. PubMed
Niederkofler V, Salie R, Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest. 2005;115:2180–2186. doi: 10.1172/JCI25683. PubMed DOI PMC
Paulick MG, Bertozzi C R. The Glycosylphosphatidylinositol anchor: A complex membrane-anchoring structure for proteins. Biochemistry. 2008;47:6991–7000. doi: 10.1021/bi8006324. PubMed DOI PMC
Krijt J, Fujikura Y, Ramsay AJ, Velasco G, Necas E. Liver hemojuvelin protein levels in mice deficient in matriptase-2 (Tmprss6) Blood Cells Mol Dis. 2011. PubMed
Silvestri L, Pagani A, Fazi C, Gerardi G, Levi S, Arosio P, Camaschella C. Defective targeting of hemojuvelin to plasma membrane is a common pathogenetic mechanism in juvenile hemochromatosis. Blood. 2007;109:4503–4510. doi: 10.1182/blood-2006-08-041004. PubMed DOI
Chen W, Huang FW, Barrientos de Renshaw T, Andrews N C. Skeletal muscle hemojuvelin is dispensable for systemic iron homeostasis. Blood. 2011. PubMed PMC
Severyn CJ, Shinde U, Rotwein P. Molecular biology, genetics and biochemistry of the repulsive guidance molecule family. Biochem J. 2009;422:393–403. doi: 10.1042/BJ20090978. PubMed DOI PMC
Zhang AS, Gao J, Koeberl DD, Enns CA. The role of hepatocyte hemojuvelin in the regulation of bone morphogenic protein-6 and hepcidin expression in vivo. J Biol Chem. 2010;285:16416–16423. doi: 10.1074/jbc.M110.109488. PubMed DOI PMC