Oxycellulose beads with drug exhibiting pH-dependent solubility
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22005954
PubMed Central
PMC3225546
DOI
10.1208/s12249-011-9696-9
Knihovny.cz E-zdroje
- MeSH
- antiflogistika nesteroidní chemie MeSH
- chemické modely MeSH
- deriváty hypromelózy MeSH
- difuze MeSH
- diklofenak chemie MeSH
- farmaceutická chemie MeSH
- farmaceutická technologie metody MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- léky s prodlouženým účinkem MeSH
- methylcelulosa analogy a deriváty chemie MeSH
- nosiče léků * MeSH
- příprava léků MeSH
- pufry MeSH
- rozpustnost MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- studie proveditelnosti MeSH
- velikost částic MeSH
- žaludeční šťáva chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- deriváty hypromelózy MeSH
- diklofenak MeSH
- léky s prodlouženým účinkem MeSH
- methylcelulosa MeSH
- nosiče léků * MeSH
- pufry MeSH
The aim of this study was to develop novel hydrogel-based beads and characterize their potential to deliver and release a drug exhibiting pH-dependent solubility into distal parts of gastrointestinal (GI) tract. Oxycellulose beads containing diclofenac sodium as a model drug were prepared by the ionotropic external gelation technique using calcium chloride solution as the cross-linking medium. Resulting beads were characterized in terms of particle shape and size, encapsulation efficacy, swelling ability and in vitro drug release. Also, potential drug-polymer interactions were evaluated using Fourier transform infrared spectroscopy. The particle size was found to be 0.92-0.96 mm for inactive (oxycellulose only) and 1.47-1.60 mm for active (oxycellulose-diclofenac sodium) beads, respectively. In all cases, the sphericity factor was between 0.70 and 0.81 with higher values observed for samples containing higher polymer and drug concentrations. The swelling of inactive beads was found to be strongly influenced by the pH and composition (i.e. Na(+) concentration) of the selected media (simulated gastric fluid vs. phosphate buffer pH 6.8). The encapsulation efficiency of the prepared particles ranged from 58% to 65%. Results of dissolution tests showed that the drug loading inside of the particles influenced the rate of its release. In general, prepared particles were able to release the drug within 12-16 h after a lag time of 4 h. Fickian diffusion was found as the predominant drug release mechanism. Thus, this novel particulate system showed a good potential to deliver drugs specifically to the distal parts of the human GI tract.
Zobrazit více v PubMed
Gonzáles-Rodríguez ML, Maestrelli F, Mura P, Rabasco AM. In vitro release of sodium diclofenac from a central core matrix tablet aimed for colonic drug delivery. Eur J Pharm Sci. 2003;20:125–131. doi: 10.1016/S0928-0987(03)00181-7. PubMed DOI
Wang Q, Zhang J, Wang A. Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohyd Polym. 2009;78:731–737. doi: 10.1016/j.carbpol.2009.06.010. DOI
Dimitrijevich SD, Tatarko M, Gracy RW. Biodegradation of oxidized regenerated cellulose. Carbohyd Res. 1990;195:247–256. doi: 10.1016/0008-6215(90)84169-U. PubMed DOI
Dimitrijevich SD, Tatarko M, Gracy RW, Wise GE, Oakford LX. In vivo degradation of oxidized regenerated cellulose. Carbohyd Res. 1990;198:331–341. doi: 10.1016/0008-6215(90)84303-C. PubMed DOI
Stillwell RL, Marks MG, Saferstein L, Wiseman DM. Oxidized cellulose: chemistry, processing and medical applications. In: Domb JA, Kost J, Wiseman MD, editors. Handbook of biodegradable polymers. Amsterdam: Harwood Academic; 1997. pp. 291–306.
Kumar V, Yang T. HNO3/H3PO4-NANO2 mediated oxidation of cellulose—preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohyd Polym. 2002;48:403–412. doi: 10.1016/S0144-8617(01)00290-9. DOI
Zhu L, Kumar V, Banker GS. Examination of aqueous oxidized cellulose dispersions as a potential drug carrier. I. Preparation and characterization of oxidized cellulose–phenylpropanolamine complexes. AAPS PharmSciTech. 2004;5(4):1–7. doi: 10.1208/pt050451. PubMed DOI PMC
Zimnitski DS, Yurkshtovich TL, Bychkovsky PM. Synthesis and characterization of oxidized cellulose. J Polym Sci A-Polym Chem. 2004;42:4785–4791. doi: 10.1002/pola.20302. DOI
Kumar V, Kang J, Yang T. Preparation and characterization of spray-dried oxidized cellulose microparticles. Pharm Dev Technol. 2001;6:449–458. doi: 10.1081/PDT-100002253. PubMed DOI
Schmidt R, Bogan D, Moore J. EU Patent Office, Pat. No. 1 153 618, 2001.
Kosaraju SL. Colon targeted delivery systems: review of polysaccharides for encapsulation and delivery. Crit Rev Food Sci Nutr. 2005;45:251–258. doi: 10.1080/10408690490478091. PubMed DOI
Maestrelli F, Zerrouk N, Cirri M, Mennini N, Mura P. Microspheres for colonic delivery of ketoprofen–hydroxypropyl-β-cyclodextrin complex. Eur J Pharm Sci. 2008;34:1–11. doi: 10.1016/j.ejps.2008.02.001. PubMed DOI
Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release. 2008;134:26–34. doi: 10.1016/j.jconrel.2008.10.019. PubMed DOI PMC
Burgesss DJ, Hickey AJ. Microsphere technology and applications. In: Swarbrick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker; 2002. pp. 1783–1793.
Kumar MNV. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci. 2000;3:234–258. PubMed
Su SF, Chou ChH, Kung ChF, Huang JD. In vitro and in vivo comparison of two diclofenac sustained release oral formulations. Int J Pharm. 2003;250:39–46. doi: 10.1016/S0378-5173(03)00237-0. PubMed DOI
Fini A, Fazio G, Rosetti F, Holgado MA, Iruín A, Alvarez-Fuentes J. Diclofenac salts. III. Alkaline and earth alkaline salts. J Pharm Sci. 2005;94:2416–2431. doi: 10.1002/jps.20436. PubMed DOI
Piyakulawat P, Praphairaksit N, Chantarasiri N, Muangsin N. Preparation and evaluation of chitosan/carrageenan beads for controlled release of sodium diclofenac. AAPS PharmSciTech. 2007;8(4):E1–E11. doi: 10.1208/pt0804097. PubMed DOI PMC
Biju SS, Saisivam S, Rajan MG, Mishra PR. Dual coated erodible microcapsules for modified release of diclofenac sodium. Eur J Pharm Biopharm. 2004;58:61–67. doi: 10.1016/j.ejpb.2004.03.021. PubMed DOI
Chan TA. Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. Lancet Oncol. 2002;3:166–174. doi: 10.1016/S1470-2045(02)00680-0. PubMed DOI
Billa N, Yuen KH, Khader MAA. Gamma-scintigraphic study of the gastrointestinal transit and in vivo dissolution of a controlled release diclofenac sodium formulation in xanthan gum matrices. Int J Pharm. 2000;201:109–120. doi: 10.1016/S0378-5173(00)00399-9. PubMed DOI
Savaser A, Özkan Y, Ismer A. Preparation and in vitro evaluation of sustained release tablet formulations of diclofenac sodium. Farmaco. 2005;60:171–177. doi: 10.1016/j.farmac.2004.10.001. PubMed DOI
Kincl M, Vrečer F, Veber M. Characterization of factors affecting the release of low-solubility drug from prolonged release tablets. Anal Chim Acta. 2004;502:107–113. doi: 10.1016/j.aca.2003.09.050. DOI
Dvořáčková K, Rabišková M, Masteiková R, Muselík J, Krejčová Soluble filler as a dissolution profile modulator for slightly soluble drugs in matrix tablets. Drug Dev Ind Pharm. 2009;35:930–940. doi: 10.1080/03639040802710243. PubMed DOI
Gonzáles-Rodríguez ML, Holgado MA, Sánchez-Lafuente C, Rabasco AM, Fini A. Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm. 2002;232:225–234. doi: 10.1016/S0378-5173(01)00915-2. PubMed DOI
Paskaris G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm. 2006;323:34–42. doi: 10.1016/j.ijpharm.2006.05.054. PubMed DOI
Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–133. doi: 10.1016/S0928-0987(01)00095-1. PubMed DOI
Samani MS, Montaseri H, Kazemi A. The effect of polymer blends on release profiles of diclofenac sodium from matrices. Eur J Pharm Biopharm. 2003;55:351–355. doi: 10.1016/S0939-6411(03)00030-4. PubMed DOI
Smrdel P, Bogataj M, Zega A, Planinšek O, Mrhar A. Shape optimization and characterization of polysaccharide beads prepared by ionotropic gelation. J Microencapsul. 2008;25:90–105. doi: 10.1080/02652040701776109. PubMed DOI
Yang YY, Wan JP, Chung TS, Pallathadka PK, Ng S, Heller J. POE–PEG–POE triblock copolymeric microspheres containing protein I. Preparation and characterization. J Control Release. 2001;75:115–128. doi: 10.1016/S0168-3659(01)00373-X. PubMed DOI
Deasy PB, Law MFL. Use of extrusion–spheronization to develop an improved oral dosage form of indomethacin. Int J Pharm. 1997;148:201–209. doi: 10.1016/S0378-5173(96)04846-6. DOI
Al-Kassas RS, Al-Gohary OMN, Al-Faadhel MM. Controlling of systemic absorption of gliclazide through incorporation into alginate beads. Int J Pharm. 2007;341:230–237. doi: 10.1016/j.ijpharm.2007.03.047. PubMed DOI
Bajpai SK, Sharma S. Investigation of swelling/degradation behavior of alginate beads crosslinked with Ca2+ and Ba2+ ions. React Funct Polym. 2004;59:129–140. doi: 10.1016/j.reactfunctpolym.2004.01.002. DOI
Cheng X, Liu R, He Y. A simple method for the preparation of monodisperse protein-loaded microspheres with high encapsulation efficiencies. Eur J Pharm Biopharm. 2010;76:336–341. doi: 10.1016/j.ejpb.2010.07.013. PubMed DOI
Pongjanyakul T, Puttipipatkhachorn S. Xanthan–alginate composite gel beads: molecular interactions and in vitro characterization. Int J Pharm. 2007;331:61–71. doi: 10.1016/j.ijpharm.2006.09.011. PubMed DOI
Setty CM, Sahoo SS, Sa B. Alginate-coated alginate–polyethylenimine beads for prolonged release of furosemide in simulated intestinal fluid. Drug Dev Ind Pharm. 2005;31:435–446. doi: 10.1080/03639040500214647. PubMed DOI
Barakat NS, Ahmad AAE. Diclofenac sodium loaded-cellulose acetate butyrate: effect of processing variables on microparticles properties, drug release kinetics and ulcerogenic activity. J Microencapsul. 2008;25:31–45. doi: 10.1080/02652040701747928. PubMed DOI
Mulani HT, Patel B, Shah NJ. Development of pH-independent matrix type sustained release drug delivery system of propranolol hydrochloride. J Appl Pharm Sci. 2011;01:83–92.
Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanism of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415:34–52. doi: 10.1016/j.ijpharm.2011.05.049. PubMed DOI
Sood A, Panchagnula R. Drug release evaluation of diltiazem CR preparations. Int J Pharm. 1998;175:95–107. doi: 10.1016/S0378-5173(98)00268-3. DOI
Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation: I—theoretical consideration. Ind Eng Chem. 1931;23:923–931. doi: 10.1021/ie50260a018. DOI