Bioactive substances with anti-neoplastic efficacy from marine invertebrates: Porifera and Coelenterata
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
22087433
PubMed Central
PMC3212816
DOI
10.5306/wjco.v2.i11.355
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer, Coelenterata, Invertebrates, Porifera,
- Publikační typ
- časopisecké články MeSH
An ever increasing demand for new lead compounds in the pharmaceutical industry has led scientists to search for natural bioactive products. Based on this extensive research, marine invertebrates now represent a rich source of novel substances with significant anti-neoplastic activities. As the current approach of synthesizing new and chemically modifying old drugs seems to have slowed down, and the identification of new anticancer drugs is not too promising, a new approach is clearly needed. The objective of this review is to present up-to-date data on these newer compounds. Based on the data summarized in this short review, it is clear that marine invertebrates represent an extremely important source of compounds with potential anti-cancer effects. Considering that we tested only a tiny number of Porifera and Coelenterata, the best is yet to come.
Zobrazit více v PubMed
Hughes AL, Yeager M. Molecular evolution of the vertebrate immune system. Bioessays. 1997;19:777–786. PubMed
Zapata A, Amemiya CT. Phylogeny of lower vertebrates and their immunological structures. Curr Top Microbiol Immunol. 2000;248:67–107. PubMed
Rosenthal J. Investing in biological diversity. Proc Cairns Conf; Cairns: OECD;; 1996. pp. 1–56.
Pomponi SA. The bioprocess-technological potential of the sea. J Biotechnol. 1999;70:5–13.
Jimeno JM. A clinical armamentarium of marine-derived anti-cancer compounds. Anticancer Drugs. 2002;13 Suppl 1:S15–S19. PubMed
De Bary AH. Die erscheinung der symbiose. Cassel: Naturforsch Versamml; 1869. pp. 1–103.
Williams DH, Stone MJ, Hauck PR, Rahman SK. Why are secondary metabolites (natural products) biosynthesized. J Nat Prod. 1989;52:1189–1208. PubMed
Šima P, Trebichavsky I, Sigler K. Non-mammalian antibiotic peptides. F. olia Microbiol. 2003;48:709–724. PubMed
Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis. 2003;3:338–348. PubMed PMC
Nagle DG, Zhou Y-D. Marine Natural Products as Inhibitors of Hypoxic Signaling in Tumors. Phytochem Rev. 2009;8:415–429. PubMed PMC
Kinghorn AD, Drug discovery from natural products. In: Lemke TL, Williams DA, editors, Foye’s Principles of Medicinal Chemistry. 6th ed. Philadelphia: Wolters Kluwer/Williams and Wilkins; 2008. pp. 12–25.
Mayer AM, Gustafson KR. Marine pharmacology in 2000: antitumor and cytotoxic compounds. Int J Cancer. 2003;105:291–299. PubMed
Amador ML, Jimeno J, Paz-Ares L, Cortes-Funes H, Hidalgo M. Progress in the development and acquisition of anticancer agents from marine sources. Ann Oncol. 2003;14:1607–1615. PubMed
Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep. 2009;26:170–244. PubMed
Munro MHG, Blunt JW, Lake RJ, Litaudon M, Battershill CN, Page MJ. From seabed to sickbed: What are the prospects. In: Van Soest RWM, van Kempen TMG, Braekman JC., editors. Sponges in time and space. Rotterdam: A.A. Balkema; 1994. pp. 473–484.
Pomponi SA, Willoughby R. Sponge cell culture for production of bioactive metabolites. In: Van Soest RWM, van Kempen TMG, Braekman JC., editors. Sponges in time and space. Rotterdam: A.A. Balkema; 1994. pp. 395–400.
Thoms C, Schupp PJ. Biotechnological potential of marine sponges and their associated bacteria as producers of new pharmaceuticals (Part I) J Internat Biotechnol Law. 2005;2:217–220.
Thoms C, Schupp PJ. Biotechnological potential of marine sponges and their associated bacteria as producers of new pharmaceuticals (Part II) J Internat Biotechnol Law. 2005;2:257–264.
Bewley CA, Faulkner DJ. Lithistid sponges: Star performers or hosts to the stars. Angewandte Chemie International Edit. 1998;37:2162–2178. PubMed
Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG. Identification of theantifungal peptide-containing symbiont of the marine sponge T. swinhoei as a novel deltaproteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol. 2000;136:969–977.
Burja AM, Hill RT. Microbial symbionts of the Australian Great Barrier Reef sponge, Candidaspongia flabellata. Hydrobiologia. 2001;461:41–47.
Schupp PJ, Kohlert-Scupp C, Whitefield S, Engemann A, Rohde S, Hemscheldt T, Pezzuto JM. Cancer chemopreventive and anticancer evaluation of extracts and fractions from marine macro- and micro-organisms collected from twilight zone waters around Guam. Nat Prod Comm. 2009;4:1717–1728. PubMed PMC
Penesyan A, Kjelleberg S, Egan S. Development of novel drugs from marine surface associated microorganisms. Mar Drugs. 2010;8:438–459. PubMed PMC
Berquist PR. Sponges. Berkeley: University of California Press; 1978.
Sipkema D, Franssen MC, Osinga R, Tramper J, Wijffels RH. Marine sponges as pharmacy. Mar Biotechnol (NY) 2005;7:142–162. PubMed PMC
Proksch P. Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon. 1994;32:639–655. PubMed
Větvička V, Šima P. Evolutionary mechanism of defense reactions. Berlin: Birkhauser Verlag; 1998. pp. 1–196.
Fusetani N, Kem W. Marine toxins: an overview. Prog Mol Subcell Biol. 2009;46:1–44. PubMed
Kikuchi A, Nieda M, Schmidt C, Koezuka Y, Ishihara S, Ishikawa Y, Tadokoro K, Durrant S, Boyd A, Juji T, et al. In vitro anti-tumour activity of alpha-galactosylceramide-stimulated human invariant Valpha24+NKT cells against melanoma. Br J Cancer. 2001;85:741–746. PubMed PMC
Tan G, Gyllenhaal C, Soejarto DD. Biodiversity as a source of anticancer drugs. Curr Drug Targets. 2006;7:265–277. PubMed
Zhang W, Guo YW, Gu Y. Secondary metabolites from the South China Sea invertebrates: chemistry and biological activity. Curr Med Chem. 2006;13:2041–2090. PubMed
Shen YC, Prakash CV. Two new acetylenic derivatives and a new meroditerpenoid from a Taiwanese marine sponge Strongylophora durissima. J Nat Prod. 2000;63:1686–1688. PubMed
Wright AE, Botelho JC, Guzmán E, Harmody D, Linley P, McCarthy PJ, Pitts TP, Pomponi SA, Reed JK. Neopeltolide, a macrolide from a lithistid sponge of the family Neopeltidae. J Nat Prod. 2007;70:412–416. PubMed
Youngsaye W, Lowe JT, Pohlki F, Ralifo P, Panek JS. Total synthesis and stereochemical reassignment of (+)-neopeltolide. Angew Chem Int Ed Engl. 2007;46:9211–9214. PubMed
Zhou J, Giannakakou P. Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents. 2005;5:65–71. PubMed
Miller JH, Singh AJ, Northcote PT. Microtubule-stabilizing drugs from marine sponges: focus on peloruside A and zampanolide. Mar Drugs. 2010;8:1059–1079. PubMed PMC
Kingston DG. Tubulin-interactive natural products as anticancer agents. J Nat Prod. 2009;72:507–515. PubMed PMC
Saito SY. Toxins affecting actin filaments and microtubules. Prog Mol Subcell Biol. 2009;46:187–219. PubMed
Urban S, Hobbs L, Hooper JNA, Capon RJ, Lamellarins Q an R: new aromatic metabolites from Australian marine sponge Dendrilla cactos. Aust J Chem. 1995;48:1491–1494.
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447–5454. PubMed PMC
Ebada SS, Lin W, Proksch P. Bioactive sesterterpenes and triterpenes from marine sponges: occurrence and pharmacological significance. Mar Drugs. 2010;8:313–346. PubMed PMC
Bergmann W, Johnson TB. The chemistry of marine animals.I. The sponge Microciona pralifera. Z Physiol Chem. 1933;222:220–226.
Ravi BN, Wells RJ, Croft KD. Malabaricane triterpenes from a Fijian collection of the sponge Jaspis stellifera. J Org Chem. 1981;46:1998–2001.
Zhang WH, Che CT. Isomalabaricane-type nortriterpenoids and other constituents of the marine sponge Geodia japonica. J Nat Prod. 2001;64:1489–1492. PubMed
Lv F, Deng Z, Li J, Fu H, van Soest RW, Proksch P, Lin W. Isomalabaricane-type compounds from the marine sponge Rhabdastrella aff. distincta. J Nat Prod. 2004;67:2033–2036. PubMed
Gordaliza M. Terpenyl-purines from the sea. Mar Drugs. 2009;7:833–849. PubMed PMC
Kumar D, Rawat DS. 7. Marine natural alkaloids as anticancer agents. Opp Challenge Scope Nat Prod Med Chem. 2001;37:213–268.
Jiang B, Smallheer JM, Amaral-Ly C, Wuonola MA. Total synthesis of (±) Dragmacidin: A cytotoxic bis(indole)alkaloid of marine origin. J Org Chem. 1994;59:6823–6827.
Burres NS, Barber DA, Gunasekera SP, Shen LL, Clement JJ. Antitumor activity and biochemical effects of topsentin. Biochem Pharmacol. 1991;42:745–751. PubMed PMC
Endo T, Tsuda M, Fromont J, Kobayashi J. Hyrtinadine A, a bis-indole alkaloid from a marine sponge. J Nat Prod. 2007;70:423–424. PubMed
Samoylenko V, Khan SI, Jacoba MR, Tekwani BL, Walker LA, Hufford CD, Muhammad I. Bioactive (+)-manzamine A and (+)-8-hydroxymanzamine A tertiary bases and salts from Acanthostrongylophora ingens and their preparations. Nat Prod Commun. 2009;4:185–192. PubMed PMC
Kuramoto M, Miyake N, Ishimaru Y, Ono N, Uno H. Cylindradines A and B: novel bromopyrrole alkaloids from the marine sponge Axinella cylindratus. Org Lett. 2008;10:5465–5468. PubMed
Mason C, McFarlane S, Johynson PG, Crowe P, Erwin PJ, Domostoj MM, Campbell FC, Manaviazar S, Hale KJ, El-Tanadi M. Agelastatin A: a novel inhibitor of osteopontin-mediated adhesion, invasion, and colony formation. Mol Canc Therapeut. 2008;7:548–558. PubMed
Zöllinger M, Kelter G, Fiebig HH, Lindel T. Antitumor activity of the marine natural product dibromophakellstatin in vitro. Bioorg Med Chem Lett. 2007;17:346–349. PubMed
Laport MS, Santos OC, Muricy G. Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol. 2009;10:86–105. PubMed
Barnes RD. Invertebrate Zoology. Philadelphia: Saunders College Publishing; 1987.
Iwashima M, Matsumoto Y, Takenaka Y, Iguchi K, Yamori T. A new marin B, novel diterpenoidic alcohols esterified by (E)-N(1)-methylurocanic acid. Isolation from the Mediterranean stolonifer Sarcodictyon roseum. Helv Chim Acta. 1987;70:2019–2027.
Su JH, Wen ZH. Bioactive cembrane-based diterpenoids from the soft coral Sinularia triangular. Mar Drugs. 2011;9:944–951. PubMed PMC
Duh CY, Wang SK, Chu MJ, Sheu JH. Cytotoxic sterols from the soft coral Nephthea erecta. J Nat Prod. 1998;61:1022–1024. PubMed
Lindel T, Jensen PR, Fenical W, Long BH, Casazza AM, Carboni J, Fairchild CR. Eleutherobin, a new cytotoxin that mimics paclitaxel (Taxol) by stabilizing microtubules. J Am Chem Soc. 1997;119:8744–8745.
Long BH, Carboni JM, Wasserman AJ, Cornell LA, Casazza AM, Jensen PR, Lindel T, Fenical W, Fairchild CR. Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol) Cancer Res. 1998;58:1111–1115. PubMed
Burres NS, Barber DA, Gunasekera SP, Shen LL, Clement JJ. Antitumor activity and biochemical effects of topsentin. Biochem Pharmacol. 1991;42:745–751. PubMed PMC
Hamel E, Sackett DL, Vourloumis D, Nicolaou KC. The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. Biochemistry. 1999;38:5490–5498. PubMed
McDaid HM, Bhattacharya SK, Chen XT, He L, Shen HJ, Gutteridge CE, Horwitz SB, Danishefsky SJ. Structure-activity profiles of eleutherobin analogs and their cross-resistance in Taxol-resistant cell lines. Cancer Chemother Pharmacol. 1999;44:131–137. PubMed
Li L, Wang CY, Huang H, Mollo E, Cimino G, Guo YW. Further highly oxygenated guaiane lactones from the South Sea gorgonian Menella sp. Helv Chim Acta. 2008;91:111–117.
Park HW, Choi SU, Baek NI, Kim SH, Eun JS, Yang JH, Kim DK. Guaiane sesquiterpenoids from Torilis japonica and their cytotoxic effects on human cancer cell lines. Arch Pharm Res. 2006;29:131–134. PubMed
Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov. 2009;8:69–85. PubMed