A novel β-glucosidase with lipolytic activity from a soil metagenome
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Bacteria klasifikace enzymologie genetika izolace a purifikace MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- beta-glukosidasa chemie genetika metabolismus MeSH
- fylogeneze MeSH
- kinetika MeSH
- lipasa chemie genetika metabolismus MeSH
- metagenom * MeSH
- molekulární sekvence - údaje MeSH
- půdní mikrobiologie * MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- stabilita enzymů MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- beta-glukosidasa MeSH
- lipasa MeSH
Moonlighting proteins have two different functions within a single polypeptide chain. Exploring moonlighting enzymes from the environment using the metagenomic approach is interesting. In the present study, a novel β-glucosidase gene, designated as bgl1D, with lipolytic activity (renamed Lip1C) was cloned through function-based screening of a metagenomic library from uncultured soil microorganisms. The deduced amino acid sequence comparison and phylogenetic analysis also indicated that Lip1C and other putative lipases are closely related. Biochemical characterization demonstrated that the maximum activity of the recombinant Lip1C protein occurs at pH 8.0 and 30°C using 4-nitrophenyl butyrate as substrate. The putative lipase had an apparent K(m) value of 0.88 mmol/L, a k(cat) value of 212/min, and a k(cat)/K(m) value of 241 L/mmol/min. Lip1C exhibited habitat-specific characteristics with 5 mmol/L AlCl(3), CuCl(2), and LiCl. The characterization of the biochemical properties of Lip1C enhances our understanding of this novel moonlighting enzyme isolated from a soil metagenome.
Zobrazit více v PubMed
J Microbiol Biotechnol. 2009 Feb;19(2):128-35 PubMed
Science. 2004 Oct 15;306(5695):482-4 PubMed
FEMS Microbiol Lett. 2008 Jul;284(1):28-34 PubMed
Appl Biochem Biotechnol. 2007 Apr;137-140(1-12):793-803 PubMed
Biochem Biophys Res Commun. 2005 Sep 16;335(1):57-65 PubMed
FEMS Microbiol Ecol. 2011 Oct;78(1):188-201 PubMed
Bioresour Technol. 2010 May;101(10):3628-34 PubMed
FEMS Microbiol Ecol. 2010 May;72(2):228-37 PubMed
Biochem J. 1999 Oct 1;343 Pt 1:177-83 PubMed
Curr Opin Biotechnol. 2002 Aug;13(4):390-7 PubMed
Genet Mol Res. 2010 Mar 23;9(1):514-23 PubMed
Curr Opin Microbiol. 2010 Oct;13(5):603-9 PubMed
Biochem Biophys Res Commun. 2009 Aug 7;385(4):605-11 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Biotechnol Appl Biochem. 2003 Feb;37(Pt 1):63-71 PubMed
Mol Biosyst. 2009 Apr;5(4):345-50 PubMed
Protein Expr Purif. 2005 Jan;39(1):124-9 PubMed
Structure. 1996 Sep 15;4(9):1017-29 PubMed
Appl Environ Microbiol. 2006 Nov;72(11):7406-9 PubMed
FEBS Lett. 1990 Aug 1;268(2):344-9 PubMed
PLoS One. 2010 Nov 11;5(11):e15499 PubMed
Biotechnol Adv. 2009 Nov-Dec;27(6):782-798 PubMed
IUBMB Life. 2011 Jul;63(7):489-94 PubMed
Appl Microbiol Biotechnol. 2004 Jun;64(6):763-81 PubMed
Protein Expr Purif. 2005 May;41(1):38-44 PubMed
Nucleic Acids Res. 2003 Jan 1;31(1):319-21 PubMed
Biochem J. 2004 Aug 1;381(Pt 3):561-79 PubMed
Mol Biol Evol. 2007 Aug;24(8):1596-9 PubMed
Chem Biol. 2005 Aug;12(8):859-60 PubMed
Microbiology (Reading). 2003 Oct;149(Pt 10):2941-2946 PubMed
Bioresour Technol. 2011 Feb;102(3):3272-8 PubMed
Appl Microbiol Biotechnol. 2009 Jan;81(5):865-74 PubMed
Biochem Biophys Res Commun. 2007 Jun 1;357(2):421-6 PubMed
Curr Opin Microbiol. 2009 Oct;12(5):505-11 PubMed
Chem Biol. 2005 Aug;12(8):895-904 PubMed