A novel, simple, and sensitive colorimetric method to determine aromatic amino acid aminotransferase activity using the Salkowski reagent
Language English Country United States Media print-electronic
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
22130693
PubMed Central
PMC3297745
DOI
10.1007/s12223-011-0089-y
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Enzyme Assays methods MeSH
- Indicators and Reagents MeSH
- Kinetics MeSH
- Colorimetry methods MeSH
- Pseudomonas putida chemistry enzymology MeSH
- Transaminases chemistry metabolism MeSH
- Tryptophan metabolism MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- aromatic amino acid aminotransferase MeSH Browser
- Bacterial Proteins MeSH
- Indicators and Reagents MeSH
- Transaminases MeSH
- Tryptophan MeSH
This study describes the development of a new colorimetric assay to determine aromatic amino acid aminotransferase (ArAT) activity. The assay is based on the transamination of L-tryptophan in the presence of 2-oxoglutarate, which yields indole-3-pyruvate (IPyA). The amount of IPyA formed was quantified by reaction with the Salkowski reagent. Optimized assay conditions are presented for ArAT isozymes isolated from Pseudomonas putida. For comparative purposes, ArAT activity was also determined by high-performance liquid chromatography. ArAT activity staining in polyacrylamide gels with the Salkowski reagent is also presented.
See more in PubMed
Andreotti G, Cubellis MV, Nitti G, Sannia G, Mai X, Marino G, Adams MWW. Characterization of aromatic aminotransferases from the hyperthermophilic archaeon Thermococcus litoralis. Eur J Biochem. 1994;220:543–549. doi: 10.1111/j.1432-1033.1994.tb18654.x. PubMed DOI
Diamondstone TI. Assay of tyrosine transaminase activity by conversion of p-hydroxyphenylpyruvate to p-hydroxybenzaldehyde. Anal Biochem. 1966;16:395–401. doi: 10.1016/0003-2697(66)90220-X. DOI
Glickmann E, Dessaux Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol. 1995;61:793–796. PubMed PMC
Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951;26:192–195. doi: 10.1104/pp.26.1.192. PubMed DOI PMC
King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fuorescein. J Lab Clin Med. 1954;44:301–302. PubMed
Lin ECC, Pitt BM, Civen M, Knox WE. The assay of aromatic amino acid transaminations and keto acid oxidation by the enol-borate tautomerase method. J Biol Chem. 1958;233:668–673. PubMed
Lu J, Austic RE. Phenylalanine-pyruvate aminotransferase activity in chicks subjected to phenylalanine imbalance or phenylalanine toxicity. Poult Sci. 2009;88:2375–2381. doi: 10.3382/ps.2009-00082. PubMed DOI
Pedraza RO, Ramirez-Mata A, Xiqui ML, Baca BE. Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol Lett. 2004;233:15–21. doi: 10.1016/j.femsle.2004.01.047. PubMed DOI
Pilet PE, Chollet R. Sur le dosage colorimetrique de l’acide indolylacetique. C R Acad Sci Ser D. 1970;271:1675–1678.
Pirkov I, Norbeck J, Gustafsson L, Albers E. A complete inventory of all enzymes in the methionine salvage pathway. FEBS J. 2008;275:4111–4120. doi: 10.1111/j.1742-4658.2008.06552.x. PubMed DOI
Salkowski E. Uber das verhalten der skatolcarbonsaure im organismus. Z Physiol Chem. 1885;9:23–33.
Simpson RM, Nonhebel HM, Christie DL. Partial purification and characterisation of an aromatic amino acid aminotransferase from mung bean (Vigna radiata L. Wilczek) Planta. 1997;201:71–77. doi: 10.1007/BF01258682. DOI
Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbal and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31:425–448. doi: 10.1111/j.1574-6976.2007.00072.x. PubMed DOI
Van Eijk HMH, Rooyakkers DR, Deutz NEP. Rapid routine determination of amino acids in plasma by high-performance liquid chromatography with a 2–3 μm Spherisorb ODS II column. J Chromatogr. 1993;620:143–148. doi: 10.1016/0378-4347(93)80062-9. PubMed DOI
Ward DE, De Vos WM, Van der Oost J. Molecular analysis of the role of two aromatic aminotransferases and a broad-specificity aspartate aminotransferase in the aromatic amino acid metabolism of Pyrococcus furiosus. Archaea. 2002;1:133–141. doi: 10.1155/2002/959031. PubMed DOI PMC
The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium