Influence of quorum sensing signal molecules on biofilm formation in Proteus mirabilis O18
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22198843
PubMed Central
PMC3297748
DOI
10.1007/s12223-011-0091-4
Knihovny.cz E-zdroje
- MeSH
- acylbutyrolaktony chemie metabolismus MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biofilmy * MeSH
- molekulární struktura MeSH
- Proteus mirabilis chemie genetika fyziologie MeSH
- quorum sensing * MeSH
- regulace genové exprese u bakterií MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acylbutyrolaktony MeSH
- bakteriální proteiny MeSH
The influence of basis of quorum sensing molecules on Proteus strains is much less known as compared to Pseudomonas or Escherichia. We have previously shown that a series of acylated homoserine lactones (acyl-HSL) does not influence the ureolytic, proteolytic, or hemolytic abilities, and that the swarming motility of Proteus mirabilis rods is strain specific. The aim of the presented study was to find out if the presence of a series of acyl-HSL influences biofilm formation of P. mirabilis laboratory strain belonging to O18 serogroup. This serogroup is characterized by the presence of a unique non-carbohydrate component, namely phosphocholine. Escherichia coli and P. mirabilis O18 strains used in this work contains cloned plasmids encoding fluorescent protein genes with constitutive gene expression. In mixed biofilms in stationary and continuous flow conditions, P. mirabilis O18 overgrow whole culture. P. mirabilis O18 strain has genetically proved a presence of AI-2 quorum sensing system. Differences in biofilm structure were observed depending on the biofilm type and culture methods. From tested acylated homoserine lactones (BHL, HHL, OHL, DHL, dDHL, tDHL), a significant influence had BHL on thickness, structure, and the amount of exopolysaccharides produced by biofilms formed by P. mirabilis O18 pDsRed(2).
Zobrazit více v PubMed
Belas R, Schneider R, Melch M. Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior. J Bacteriol. 1998;180:6126–6139. PubMed PMC
Broomfield RJ, Morgan SD, Khan A, Stickler DJ. Crystalline bacterial biofilm formation on urinary catheters by urease-producing urinary tract pathogens: a simple method of control. J Med Microbiol. 2009;58(Pt 10):1367–1375. doi: 10.1099/jmm.0.012419-0. PubMed DOI
Chromek M, Stankowska D, Dadfar E, Kaca W, Rabbani H, Brauner A. Interleukin-8 response in cells from the human urinary tract induced by lipopolysaccharides of Proteus mirabilis O3 and O18. J Urol. 2005;173:1381–1384. doi: 10.1097/01.ju.0000149032.20713.ed. PubMed DOI
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI
Gupta K, Sahm DF, Mayfield D, Stamm WE. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: a nation wide analysis. Clin Infect Dis. 2001;33:89–94. doi: 10.1086/320880. PubMed DOI
Hamilton M, Heersink J, Buckingham-Meyer K, Goeres D. The biofilm laboratory, step-by-step protocols for experimental design, analysis, and data interpretation. Bozeman: Cytergy Publishing; 2003.
Henke JM, Bassler BL. Bacterial social engagements. Trends Cell Biol. 2004;14:648–656. doi: 10.1016/j.tcb.2004.09.012. PubMed DOI
Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000;146:2395–2407. PubMed
Hryniewicz K, Szczypa K, Sulikowska A, Jankowski K, Betlejewska K, Hryniewicz W. Antibiotic susceptibility of bacterial strains isolated from urinary tract infections in Poland. J Antimicrob Chemother. 2001;47:773–780. doi: 10.1093/jac/47.6.773. PubMed DOI
Kendall MM, Sperandio V. Quorum sensing by enteric pathogens. Curr Opin Gastroenterol. 2007;23(1):10–15. doi: 10.1097/MOG.0b013e3280118289. PubMed DOI
Li H, Tanikawa T, Sato Y, Nakagawa Y, Matsuyama T. Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol. 2005;49:303–310. PubMed
Liaw SJ, Lai HC, Wang WB. Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect Immun. 2004;72:6836–6845. doi: 10.1128/IAI.72.12.6836-6845.2004. PubMed DOI PMC
Lucas RL, Lostroh CP, DiRusso CC, Spector MP, Wanner BL, Lee CA. Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar Typhimurium. J Bacteriol. 2000;182:1872–1882. doi: 10.1128/JB.182.7.1872-1882.2000. PubMed DOI PMC
Maczynska B, Smutnicka D, Przondo-Mordarska A, Bartoszewicz M, Junka A, Janczura A, Nowicka J. Biofilm formation by clinical Klebsiella strains expressing various types of adhesins on catheters made of different materials. Adv Clin Exp Med. 2010;19(4):443–453.
Nasser W, Reverchon S. New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators. Anal Bioanal Chem. 2007;387:381–390. doi: 10.1007/s00216-006-0702-0. PubMed DOI
Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol. 2005;187(10):3477–3485. doi: 10.1128/JB.187.10.3477-3485.2005. PubMed DOI PMC
Schauder S, Shokat K, Surette MG, Bassler BL. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol. 2001;41(2):463–476. doi: 10.1046/j.1365-2958.2001.02532.x. PubMed DOI
Schneider R, Lockatell CV, Johnson D, Belas R. Detection and mutation of a luxS-encoded autoinducer in Proteus mirabilis. Microbiology. 2002;148:773–782. PubMed
Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Jr, Rinehart KL, Farrand SK. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA. 1997;94:6036–6041. doi: 10.1073/pnas.94.12.6036. PubMed DOI PMC
Sosa V, Zunino P (2009) Effect of Ibicella lutea on uropathogenic Proteus mirabilis growth, virulence, and biofilm formation. J Infect Dev Ctries 3(10):762–770 PubMed
Soto MJ, Fernández-Pascual M, Sanjuan J, Olivares J. A fadD mutant of Sinorhizobium meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots. Mol Microbiol. 2002;43:371–382. doi: 10.1046/j.1365-2958.2002.02749.x. PubMed DOI
Stankowska D, Kwinkowski M, Kaca W. Quantification of Proteus mirabilis virulence factors and modulation by acylated homoserine lactones. J Microbiol Immunol Infect. 2008;41:243–253. PubMed
Stickler D, Young R, Jones G, Sabbuba N, Morris N. Why are Foley catheters so vulnerable to encrustation and blockage by crystalline bacterial biofilm? Urol Res. 2003;31:306–311. doi: 10.1007/s00240-003-0340-3. PubMed DOI
Viana ES, Campos MEM, Ponce AR, Mantovani HC, Vanetti MCD. Biofilm formation and acyl homoserine lactone production in Hafnia alvei isolated from raw milk. Biol Res. 2009;42:427–436. PubMed
Wang LH, He Y, Gao Y, Wu JE, Dong YH, He C, Wang SX, Weng LX, Xu JL, Tay L, Fang RX, Zhang LH. A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol. 2004;51:903–912. doi: 10.1046/j.1365-2958.2003.03883.x. PubMed DOI
Wielbo J, Golus J, Marek-Kozaczuk M, Skorupska A. Symbiosis-stage associated alterations in quorum sensing autoinducer molecules biosynthesis in Sinorhizobium meliloti. Plant Soil. 2010;329:399–410. doi: 10.1007/s11104-009-0166-z. DOI
Williams P, Camara M, Hardman A, Swift S, Milton D, Hope VJ, Winzer K, Middleton B, Pritchard DI, Bycroft BW. Quorum sensing and the population-dependent control of virulence. Philos Trans R Soc Lond B Biol Sci. 2000;355:667–680. doi: 10.1098/rstb.2000.0607. PubMed DOI PMC
Zhu H, Shen YL, Wei DZ, Zhu JW. A novel quorum sensing system co-regulated by chromosome- and plasmid-encoded genes in Serratia marcescens H30. Mol Cell Biochem. 2008;319:87–90. doi: 10.1007/s11010-008-9880-8. PubMed DOI