• This record comes from PubMed

Effects of microcystin-containing cyanobacterial extract on hematological and biochemical parameters of common carp (Cyprinus carpio L.)

. 2012 Aug ; 38 (4) : 1159-1167. [epub] 20120107

Language English Country Netherlands Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 22228075
PubMed Central PMC3389247
DOI 10.1007/s10695-011-9601-1
PII: 10.1007/s10695-011-9601-1
Knihovny.cz E-resources

The aim of the study was to assess the effects of a cyanobacterial extract containing microcystins (MCs) on selected hematological and biochemical parameters in common carp (Cyprinus carpio L.), as well as to determine the accumulation of toxins in fish tissues. The fish were immersed for 5 days in water containing toxins at a final concentration of 12 μg/L of microcystin LR equivalent. Microcystin LR residues were detected in fish liver, reaching 207, 238 and 260 ng/g f.w. of the tissues taken 24 h, 72 h and 5 days after the end of intoxication, respectively. The most substantial changes were found in fish plasma, including increases in creatine kinase, lactate dehydrogenase, ammonia, glucose, aspartate aminotransferase and alanine aminotransferase levels. A decline of about 50% in lysozyme activity was observed by the end of the experimental period. Moreover, a marked increase in ceruloplasmin activity was detected 24 h after the end of intoxication with a subsequent decrease in its activity after 72 h and 5 days. This study concludes that not only consumption of food containing toxins but also MCs dissolved in water may pose a threat to fish health. Additionally, detected changes in lysozyme and ceruloplasmin activity may have distinct effects in fish resistance against pathogens or oxidative stress, which should be taken into account in the future studies.

See more in PubMed

Baganz D, Staaks G, Pflugmacher S, Steinberg CEW. Comparative study of microcystin-LR-induced behavioral changes of two fish species, Danio rerio and Leucaspius delineatus. Environ Toxicol. 2004;19:564–570. doi: 10.1002/tox.20063. PubMed DOI

Blaha L, Babica P, Marsalek B. Toxins produced in cyanobacterial water blooms—toxicity and risks. Interdisc Toxicol. 2009;2:36–41. doi: 10.2478/v10102-009-0006-2. PubMed DOI PMC

Blaha L, Blahova L, Kohoutek J, Adamovsky O, Babica P, Marsalek B. Temporal and spatial variability of cyanobacterial toxins microcystins in three interconnected freshwater reservoirs. J Serb Chem Soc. 2010;75:1303–1312. doi: 10.2298/JSC100113106B. DOI

Bols NC, Brubacher JL, Ganassin RC, Lee LE. Ecotoxicology and innate immunity in fish. Dev Comp Immunol. 2001;25:853–873. doi: 10.1016/S0145-305X(01)00040-4. PubMed DOI

Briand JF, Jacquet S, Bernard C, Humbert JF. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet Res. 2003;34:361–377. doi: 10.1051/vetres:2003019. PubMed DOI

Butler N, Carlisle JC, Linville R, Washburn B. Microcystins: a brief overview of their toxicity and effects, with special reference to fish, wildlife, and livestock. Sacramento: California Environmental Protection Agency; 2009. p. 5.

Campos A, Vasconcelos V. Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci. 2010;11:268–287. doi: 10.3390/ijms11010268. PubMed DOI PMC

Carmichael WW, Azevedo SM, An JS, Molica RJR, Jochimsen EM, Lau S, Rinehart KL, Shaw GR, Eaglesham GK. Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect. 2001;109:663–668. doi: 10.1289/ehp.01109663. PubMed DOI PMC

Cazenave J, Wunderlin DA, de Los Angeles Bistoni M, Amé MV, Krause E, Pflugmacher S, Wiegand C. Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis. A field and laboratory study. Aquat Toxicol. 2005;75:178–190. doi: 10.1016/j.aquatox.2005.08.002. PubMed DOI

Chen J, Zhang D, Xie P, Wang Q, Ma Z. Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms. Sci Total Environ. 2009;407:3317–3322. doi: 10.1016/j.scitotenv.2009.02.005. PubMed DOI

Chen J, Xie P, Li L, Xu J. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol Sci. 2009;108:81–89. doi: 10.1093/toxsci/kfp009. PubMed DOI

Day DR, Segars AL, Arendt MD, Lee AM, Peden-Adams MM. Relationship of blood mercury levels to health parameters in the loggerhead sea turtle (Caretta caretta) Environ Health Perspect. 2007;115:1421–1428. PubMed PMC

Ding WX, Ong CN. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiol Lett. 2003;220:1–7. doi: 10.1016/S0378-1097(03)00100-9. PubMed DOI

Ding WX, Shen HM, Ong CN. Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocytes. Hepatology. 2000;32:547–555. doi: 10.1053/jhep.2000.16183. PubMed DOI

Ernst B (2008) Investigations on the impact of toxic cyanobacteria on fish—as exemplified by the coregonids in lake Ammersee. Dissertation, Konstanzer Online-Publications-System (KOPS)

Fox PL, Mazumdar B, Ehrenwald E, Mukhopadhyay CK. Ceruloplasmin and cardiovascular disease. Free Radical Biol Med. 2000;28:1735–1744. doi: 10.1016/S0891-5849(00)00231-8. PubMed DOI

Gehringer MM. Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Lett. 2004;557:1–8. doi: 10.1016/S0014-5793(03)01447-9. PubMed DOI

Hudder A, Song W, O’Shea KE, Walsh PJ. Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation. Toxicol Appl Pharmacol. 2007;220:357–364. doi: 10.1016/j.taap.2007.02.004. PubMed DOI PMC

Jancula D, Mikovcova M, Adamek Z, Marsalek B. Changes in the photosynthetic activity of Microcystis colonies after gut passage through Nile tilapia (Oreochromis niloticus) and silver carp (Hypophthalmichthys molitrix) Aquacult Res. 2008;39:311–314. doi: 10.1111/j.1365-2109.2007.01892.x. DOI

Kopp R, Mares J, Kubicek Z, Babica P (2005) The influence of toxic cyanobacterial water blooms on the hematological indicators of silver carp (Hypophthalmichthys molitrix Val.). Oceanol Hydrobiol Stud 34(Supl.3):85–92

Kopp R, Mares J, Palikova M, Navratil S, Kubicek Z, Zikova A, Hlavkova J, Blaha L. Biochemical parameters of blood plasma and content of microcystins in tissues of common carp (Cyprinus carpio L.) from a hypertrophic pond with cyanobacterial water bloom. Aquacult Res. 2009;40:1683–1693. doi: 10.1111/j.1365-2109.2009.02285.x. DOI

Kopp R, Palikova M, Navratil S, Kubicek Z, Zikova A, Mares J. Modulation of biochemical and haematological indices of silver carp (Hypophthalmichthys molitrix Val.) exposed to toxic cyanobacterial water bloom. Acta Vet Brno. 2010;79:135–146. doi: 10.2754/avb201079010135. DOI

Lawton LA, Edwards C, Codd GA. Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst. 1994;119:1525–1530. doi: 10.1039/an9941901525. PubMed DOI

Li XY, Chung IK, Kim JI, Lee JA. Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to microcystis under laboratory conditions. Toxicon. 2004;44:821–827. doi: 10.1016/j.toxicon.2004.06.010. PubMed DOI

Li S, Xie P, Xu J, Li L, Liang G, Zheng L. Tissue distribution of microcystins in bighead carp via intraperitoneal injection. Bull Environ Contam Toxicol. 2007;79:297–300. doi: 10.1007/s00128-007-9207-6. PubMed DOI

Malbrouck C, Kestemont P. Effects of microcystins on fish. Environ Toxicol Chem. 2006;25:72–86. doi: 10.1897/05-029R.1. PubMed DOI

Matsunaga H, Harada K-I, Senma M, Ito Y, Yasuda N, Ushida S, Kimura Y. Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan: sudden appearance of toxic cyanobacteria. Nat Toxins. 1999;7:81–84. doi: 10.1002/(SICI)1522-7189(199903/04)7:2<81::AID-NT44>3.0.CO;2-O. PubMed DOI

Murray CK, Fletcher TC. The immunohistochemical localization of lysozyme in plaice (Pleuronectes platessa L.) tissues. J Fish Biol. 1976;9:329–334. doi: 10.1111/j.1095-8649.1976.tb04681.x. DOI

Oberemm A, Becker J, Codd G, Steinberg C. Effects of cyanobacterial toxins and aqueous crude extracts on the development of fish and amphibians. Environ Toxicol. 1999;14:77–88. doi: 10.1002/(SICI)1522-7278(199902)14:1<77::AID-TOX11>3.0.CO;2-F. DOI

Palíková M, Kovářů F, Navrátil S, Kubala L, Pešák S, Vajcová V. The effects of pure microcystin LR and biomass of blue-green algae on selected immunological indices of carp (Cyprinus carpio L.) and silver carp (Hypophthalmichthys molitrix Val.) Acta Vet Brno. 1998;67:265–272. doi: 10.2754/avb199867040265. DOI

Papadimitriou T, Kagalou I, Bacopoulos V, Leonardos ID. Accumulation of microcystins in water and fish tissues: an estimation of risk associated with microcystins in most of the Greek Lakes. Environ Toxicol. 2010;25:418–427. doi: 10.1002/tox.20513. PubMed DOI

Pawlik-Skowrońska B, Pirszel J, Kornijów R. Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake. Int J Lim. 2008;44:145–150. doi: 10.1051/limn:2008015. DOI

Pelgrom SMGJ, Lock RAC, Balm PHM, Bonga W. Integrated physiological response of tilapia to sublethal copper exposure. Aquat Toxicol. 1995;32:303–320. doi: 10.1016/0166-445X(95)00004-N. DOI

Qiu T, Xie P, Ke Z, Li L, Guo L. In situ studies on physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms in a large Chinese lake. Toxicon. 2007;50:365–376. doi: 10.1016/j.toxicon.2007.04.006. PubMed DOI

Qiu T, Xie P, Guo L, Zhang D. Plasma biochemical responses of the planktivorous filter-feeding silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) to prolonged toxic cyanobacterial blooms in natural waters. Environ Toxicol Pharmacol. 2009;27:350–356. doi: 10.1016/j.etap.2008.12.001. PubMed DOI

Romo S, Fernandez F, Ouahid Y, Baron-Sola A. Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake. Environ Monit Assess. 2011 PubMed

Sieroslawska A, Rymuszka A, Bownik A, Skowroński T. The influence of microcystin-LR on fish phagocytic cells. Hum Exp Toxicol. 2007;26:1–5. doi: 10.1177/09603271060080075. PubMed DOI

Sivonen K, Jones G. Cyanobacterial toxins. In: Chorus I, Bartram J, editors. Toxic cyanobacteria in water. London: E&FN Spon; 1999. pp. 41–111.

Squitti R, Quattrocchi CC, Salustri C, Rossini PM. Ceruloplasmin fragmentation is implicated in ‘free’ copper deregulation of Alzheimer’s disease. Prion. 2008;2:23–27. doi: 10.4161/pri.2.1.6297. PubMed DOI PMC

Svobodova Z, Pravda D, Palackova J (1991) Unified methods of haematological examination of fish. Research Institute of Fish Culture and Hydrobiology Vodnany, Edition Methods No. 20

Xie L, Xie P, Guo L, Li L, Miyabara Y, Park H. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environ Toxicol. 2005;20:293–300. doi: 10.1002/tox.20120. PubMed DOI

Zhang X, Xie P, Wang W, Li D, Shi Z. Plasma biochemical responses of the omnivorous crucian carp (Carassius auratus) to crude cyanobacterial extracts. Fish Physiol Biochem. 2007;34:323–329. doi: 10.1007/s10695-007-9191-0. PubMed DOI

Zhang X, Xie P, Liu Y, Qiu T. Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Sci Total Environ. 2009;407:2191–2199. doi: 10.1016/j.scitotenv.2008.12.039. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...