Using available information to assess the potential effects of climate change on vegetation in the High Arctic: north Billjefjorden, central Spitsbergen (Svalbard)
Jazyk angličtina Země Švédsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
22262348
PubMed Central
PMC3390573
DOI
10.1007/s13280-011-0235-4
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- klimatické změny * MeSH
- monitorování životního prostředí * MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Arktida MeSH
- Švédsko MeSH
We review the available data that can be used to assess the potential impact of climate change on vegetation, and we use central Spitsbergen, Svalbard, as a model location for the High Arctic. We used two sources of information: recent and short-term historical records, which enable assessment on scales of particular plant communities and the landscape over a period of decades, and palynological and macrofossil analyses, which enable assessment on time scales of hundreds and thousands of years and on the spatial scale of the landscape. Both of these substitutes for standardized monitoring revealed stability of vegetation, which is probably attributable to the harsh conditions and the distance of the area from sources of diaspores of potential new incomers. The only evident recent vegetation changes related to climate change are associated with succession after glacial retreats. By establishing a network of permanent plots, researchers will be able to monitor immigration of new species from diversity 'hot spots' and from an abandoned settlement nearby. This will greatly enhance our ability to understand the effects of climate change on vegetation in the High Arctic.
Zobrazit více v PubMed
Acock AM. Vegetation of a calcareous inner fjord region in Spitsbergen. Journal of Ecology. 1940;28:81–106. doi: 10.2307/2256164. DOI
Birks HH. Holocene vegetational history and climatic change in west Spitsbergen—plant macrofossils from Skardtjørna, an Arctic lake. Holocene. 1991;1:209–215. doi: 10.1177/095968369100100303. DOI
Callaghan TV, Bjorn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, et al. Biodiversity, distributions and adaptations of arctic species in the context of environmental change. Ambio. 2004;33:404–417. PubMed
Callaghan TV, Tweedie CE, Ǻkerman J, Andrews C, Bergstedt J, Butler MG, Christensen TR, Cooley D, Dahlberg U, et al. Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year—Back to the Future Project (IPY-BFP) Ambio. 2011;40:705–716. doi: 10.1007/s13280-011-0179-8. PubMed DOI PMC
Daniëls FJA, Molenaar JG, Chytrý M, Tichý L. Vegetation change in Southeast Greenland? Tasiilaq revisited after 40 years. Journal of Vegetation Science. 2011;14:230–241. doi: 10.1111/j.1654-109X.2010.01107.x. DOI
Dobbs CG. The vegetation of Cape Napier, Spitsbergen. Journal of Ecology. 1939;27:126–148. doi: 10.2307/2256304. DOI
Elvebakk A. A vegetation map of Svalbard on the scale 1:3.5 mill. Phytocoenologia. 2005;35:951–967. doi: 10.1127/0340-269X/2005/0035-0951. DOI
Elvebakk A. ‘Arctic hotspot complexes’—proposed priority sites for studying and monitoring effects of climatic change on arctic biodiversity. Phytocoenologia. 2005;35:1067–1079. doi: 10.1127/0340-269X/2005/0035-1067. DOI
Elverhoi A, Svendsen JI, Solheim A, Andersen ES, Milliman J, Mangerud J, Hooke RL. Late quaternary sediment yield from the High Arctic Svalbard Area. Journal of Geology. 1995;103:1–17. doi: 10.1086/629718. DOI
Essl, F., S. Dullinger, W. Rabitsch, P.E. Hulme, K. Hulber, V. Jarošík, I. Kleinbauer, F. Krausmann, I. Kühn, W. Nentwig, M. Vila, P. Genovesi, F. Gherardi, M. L. Desprez-Loustau, A. Roques, P. Pyšek. 2011. Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences of the United States of America 108: 203–207. PubMed PMC
Hall CM, James M, Wilson S. Biodiversity, biosecurity, and cruising in the Arctic and sub-Arctic. Journal of Heritage Tourism. 2010;5:351–364. doi: 10.1080/1743873X.2010.517845. DOI
Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS. Five potential consequences of climate change for invasive species. Conservation Biology. 2008;22:534–543. doi: 10.1111/j.1523-1739.2008.00951.x. PubMed DOI
Hill GB, Henry GHR. Responses of High Arctic wet sedge tundra to climate warming since 1980. Global Change Biology. 2011;17:276–287. doi: 10.1111/j.1365-2486.2010.02244.x. DOI
Hyvarinen H. Flandrian pollen diagrams from Svalbard. Geografiska Annaler. 1970;52A:213–222. doi: 10.2307/520815. DOI
Jónsdóttir IS. Terrestrial ecosystems on Svalbard: Heterogeneity, complexity and fragility from an Arctic island perspective. Biology and Environment. Proceedings of the Royal Irish Academy. 2005;105B:155–165. doi: 10.3318/BIOE.2005.105.3.155. DOI
Körner, Ch. 2003. Alpine plant life. A functional plant ecology of high mountain ecosystems. Berlin: Springer.
Liška J, Soldán Z. Alien vascular plants recorded from the Barentsburg and Pyramiden settlements, Svalbard. Preslia. 2004;76:279–290.
Matthews, J.A. 2008. The ecology of recently-deglaciated terrain. Cambridge: Cambridge University Press.
Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature. 1997;386:698–702. doi: 10.1038/386698a0. DOI
Parmesan C. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics. 2006;37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100. DOI
Prach K, Košnar J, Klimešová J, Hais M. High Arctic vegetation after 70 years: a repeated analysis from Svalbard. Polar Biology. 2010;33:635–639. doi: 10.1007/s00300-009-0739-6. DOI
Prach K, Walker LR. Four opportunities for studies of ecological succession. Trends in Ecology & Evolution. 2011;26:119–123. doi: 10.1016/j.tree.2010.12.007. PubMed DOI
Rachlewicz G, Szcucinski W, Ewertowski M. Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research. 2007;28:159–186.
Rønning OI. The flora of Svalbard. Oslo: Norsk Polarinstitut; 1996.
Rozema J, Boelen P, Doorenbosch M, Bohncke S, Blokker P, Boekel C, Broekman RA, Konert M. A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard. Plant Ecology. 2006;182:155–173.
Rozema J, Weijers S, Broekman R, Blokker P, Buizer B, Werleman C, El Yaqine H, Hoogedoorn H, et al. Annual growth of Cassiope tetragona as a proxy for Arctic climate: Developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale. Global Change Biology. 2009;15:1703–1715. doi: 10.1111/j.1365-2486.2009.01858.x. DOI
Sturm M, Racine C, Tape K. Climate change—Increasing shrub abundance in the Arctic. Nature. 2001;411:546–547. doi: 10.1038/35079180. PubMed DOI
Summerhayes VS, Elton CS. Contributions to the ecology of Spitsbergen and Bear Island. Journal of Ecology. 1923;11:214–286. doi: 10.2307/2255863. DOI
Svendsen JI, Mangerud J. Holocene glacial and climatic variations on Spitsbergen, Svalbard. Holocene. 1997;7:45–57. doi: 10.1177/095968369700700105. DOI
Szczucinski W, Zajaczkowski M, Scholten J. Sediment accumulation rates in subpolar fjords—Impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard. Estuarine, Coastal and Shelf Science. 2009;85:345–356. doi: 10.1016/j.ecss.2009.08.021. DOI
Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgely GF, et al. Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology Evolution and Systematics. 2008;9:137–152. doi: 10.1016/j.ppees.2007.09.004. DOI
Knaap WO. Five short diagrams of soils from Jan Mayen, Norway: a testimony of a dynamic landscape. Polar Research. 1987;5:193–206. doi: 10.1111/j.1751-8369.1987.tb00622.x. DOI
Knaap WO. Palynology of two 4500 year old skua-mounds of the Arctic Skua (Stercorarius parasiticus (L.)) in Svalbard. Polar Research. 1988;6:43–57. doi: 10.1111/j.1751-8369.1988.tb00580.x. DOI
Knaap WO. Relations between present-day pollen deposition and vegetation in Spitsbergen. Grana. 1990;29:63–78. doi: 10.1080/00173139009429977. DOI
Knaap WO. Palynology of peat sections from Spitsbergen covering the last few centuries. Nordic Journal of Botany. 1991;11:213–223. doi: 10.1111/j.1756-1051.1991.tb01822.x. DOI
Walker LR, del Moral R. Primary succession and ecosystem rehabilitation. Cambridge: Cambridge University Press; 2003.
Walton J. A Spitsbergen salt marsh with observations on the ecological phenomena attendant on the emergence of land from the sea. Journal of Ecology. 1922;10:109–121. doi: 10.2307/2255433. DOI
Wichmann MC, Alexander MJ, Soons MB, Galsworthy S, Dunne L, Gould R, Fairfax C, Niggemann M, et al. Human-mediated dispersal of seeds over long distances. Proceedings of the Royal Society B-Biological Sciences. 2009;276:523–532. doi: 10.1098/rspb.2008.1131. PubMed DOI PMC
Wilson SD, Nilsson C. Arctic alpine vegetation change over 20 years. Global Change Biology. 2009;15:1676–1684. doi: 10.1111/j.1365-2486.2009.01896.x. DOI