Acute hyperglycemia does not impair microvascular reactivity and endothelial function during hyperinsulinemic isoglycemic and hyperglycemic clamp in type 1 diabetic patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22262970
PubMed Central
PMC3259485
DOI
10.1155/2012/851487
Knihovny.cz E-zdroje
- MeSH
- cévní endotel cytologie MeSH
- diabetes mellitus 1. typu patofyziologie terapie MeSH
- dospělí MeSH
- glykemický clamp * MeSH
- hyperglykemie patofyziologie terapie MeSH
- inzulin metabolismus MeSH
- kalibrace MeSH
- komplikace diabetu patologie MeSH
- krevní glukóza metabolismus MeSH
- laser doppler flowmetrie metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrocirkulace MeSH
- oxidační stres MeSH
- perfuze MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inzulin MeSH
- krevní glukóza MeSH
AIMS: The aim of this study was to evaluate the effect of acute glycemia increase on microvasculature and endothelium in Type 1 diabetes during hyperinsulinemic clamp. PATIENTS AND METHODS: Sixteen patients (51 ± 7 yrs) without complications were examined during iso- and hyperglycemic clamp (glucose increase 5.5 mmol·L(-1)). Insulin, lipid parameters, cell adhesion molecules and fibrinogen were analyzed. Microvascular reactivity (MVR) was measured by laser Doppler flowmetry. RESULTS: Maximum perfusion and the velocity of perfusion increase during PORH were higher in hyperglycemia compared to baseline (47 ± 16 versus 40 ± 16 PU, P < 0.01, and 10.4 ± 16.5 versus 2.6 ± 1.5 PU·s(-1), P < 0.05, resp.). Time to the maximum perfusion during TH was shorter and velocity of perfusion increase during TH higher at hyperglycemia compared to isoglycemic phase (69 ± 15 versus 77 ± 16 s, P < 0.05, and 1.4 ± 0.8 versus 1.2 ± 0.7 PU·s(-1), P < 0.05, resp.). An inverse relationship was found between insulinemia and the time to maximum perfusion during PORH (r = -0.70, P = 0.007). CONCLUSION: Acute glycemia did not impair microvascular reactivity in this clamp study in Type 1 diabetic patients. Our results suggest that insulin may play a significant role in the regulation of microvascular perfusion in patients with Type 1 diabetes through its vasodilation effect and can counteract the effect of acute glucose fluctuations.
Zobrazit více v PubMed
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-Year follow-up of intensive glucose control in type 2 diabetes. The New England Journal of Medicine. 2008;359(15):1577–1589. PubMed
The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England Journal of Medicine. 1993;329(14):977–986. PubMed
UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet. 1998;352(9131):837–853. PubMed
Nathan DM, Cleary PA, Backlund JYC, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. The New England Journal of Medicine. 2005;353(25):2643–2653. PubMed PMC
Muggeo M, Zoppini G, Bonora E, et al. Fasting plasma glucose variability predicts 10-year survival of type 2 diabetic patients: the Verona Diabetes Study. Diabetes Care. 2000;23(1):45–50. PubMed
Muggeo M, Verlato G, Bonora E, Zoppini G, Corbellini M, De Marco R. Long-term instability of fasting plasma glucose, a novel predictor of cardiovascular mortality in elderly patients with non-insulin-dependent diabetes mellitus: the verona diabetes study. Circulation. 1997;96(6):1750–1754. PubMed
Gimeno-Orna JA, Castro-Alonso FJ, Boned-Juliani B, Lou-Arnal LM. Fasting plasma glucose variability as a risk factor of retinopathy in Type 2 diabetic patients. Journal of Diabetes and Its Complications. 2003;17(2):78–81. PubMed
Takao T, Ide T, Yanagisawa H, Kikuchi M, Kawazu S, Matsuyama Y. The effect of fasting plasma glucose variability on the risk of retinopathy in type 2 diabetic patients: retrospective long-term follow-up. Diabetes Research and Clinical Practice. 2010;89(3):296–302. PubMed
Bragd J, Adamson U, Bäcklund LB, Lins PE, Moberg E, Oskarsson P. Can glycaemic variability, as calculated from blood glucose self-monitoring, predict the development of complications in type1 diabetes over a decade? Diabetes and Metabolism. 2008;34(6):612–616. PubMed
Kilpatrick ES, Rigby AS, Atkin SL. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care. 2006;29(7):1486–1490. PubMed
Siegelaar SE, Kilpatrick ES, Rigby AS, Atkin SL, Hoekstra JBL, Devries JH. Glucose variability does not contribute to the development of peripheral and autonomic neuropathy in type 1 diabetes: data from the DCCT. Diabetologia. 2009;52(10):2229–2232. PubMed PMC
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820. PubMed
Brownlee M, Hirsch IB. Glycemic variability: a hemoglobin A1c-independent risk factor for diabetic complications. Journal of the American Medical Association. 2006;295(14):1707–1708. PubMed
Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003;52(11):2795–2804. PubMed
Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. American Journal of Physiology—Endocrinology and Metabolism. 2001;281(5):E924–E930. PubMed
Wentholt IME, Kulik W, Michels RPJ, Hoekstra JBL, DeVries JH. Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes. Diabetologia. 2008;51(1):183–190. PubMed
Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349–1354. PubMed
Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. Journal of the American Medical Association. 2006;295(14):1681–1687. PubMed
Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nature Clinical Practice Endocrinology and Metabolism. 2007;3(1):46–56. PubMed
Wassink AMJ, Olijhoek JK, Visseren FLJ. The metabolic syndrome: metabolic changes with vascular consequences. European Journal of Clinical Investigation. 2007;37(1):8–17. PubMed
Joshua IG, Zhang Q, Falcone JC, Bratcher AP, Rodriguez WE, Tyagi SC. Mechanisms of endothelial dysfunction with development of type 1 diabetes mellitus: role of insulin and C-peptide. Journal of Cellular Biochemistry. 2005;96(6):1149–1156. PubMed
Oomen PHN, Kant GD, Dullaart RPF, Reitsma WD, Smit AJ. Acute hyperglycemia and hyperinsulinemia enhance vasodilatation in type 1 diabetes mellitus without increasing capillary permeability and inducing endothelial dysfunction. Microvascular Research. 2002;63(1):1–9. PubMed
Chittari MV, McTernan P, Bawazeer N, et al. Impact of acute hyperglycaemia on endothelial function and retinal vascular reactivity in patients with Type 2 diabetes. Diabetic Medicine. 2011;28(4):450–454. PubMed
Dandona P, Chaudhuri A, Ghanim H, Mohanty P. Insulin as an anti-inflammatory and antiatherogenic modulator. Journal of the American College of Cardiology. 2009;53(supplement 5):S14–S20. PubMed
Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo—a specific vascular action of insulin. Circulation. 2000;101(6):676–681. PubMed
Monnier L, Colette C, Mas E, et al. Regulation of oxidative stress by glycaemic control: evidence for an independent inhibitory effect of insulin therapy. Diabetologia. 2010;53(3):562–571. PubMed
DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. The American Journal of Physiology. 1979;237(3):E214–E223. PubMed
Šindelka G, Škrha J, Prázný M, Haas T. Association of obesity, diabetes, serum lipids and blood pressure regulates insulin action. Physiological Research. 2002;51(1):85–91. PubMed
Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochemical Medicine. 1976;15(2):212–216. PubMed
Clauss A. A rapid physiological coagulation method for the determination of plasma fibrinogen. Lancet. 1951;2:p. 501.
Freccero C, Holmlund F, Bornmyr S, et al. Laser Doppler perfusion monitoring of skin blood flow at different depths in finger and arm upon local heating. Microvascular Research. 2003;66(3):183–189. PubMed
Meigs JB, O’Donnell CJ, Tofler GH, et al. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: the Framingham Offspring Study. Diabetes. 2006;55(2):530–537. PubMed
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–1625. PubMed
Škrha J, Prázný M, Haas T, Kvasnička J, Kalvodová B. Comparison of laser-Doppler flowmetry with biochemical indicators of endothelial dysfunction related to early microangiopathy in Type 1 diabetic patients. Journal of Diabetes and Its Complications. 2001;15(5):234–240. PubMed
Škrha J. Diabetes and vascular disease: from pathogenesis to treatment. Are vascular effects of hypoglycemic and hypolipidemic drugs independent of their metabolic effects? Diabetes and Metabolic Syndrome. 2007;1(1):61–69.
Kotzailias N, Graninger M, Knechtelsdorfer M, Jilma B. Acute effects of hyperglycaemia on plasma concentration of soluble P-selectin and von Willebrand Factor in healthy volunteers -a prospective randomised double blind controlled study. Thrombosis Research. 2009;123(3):452–459. PubMed
Undas A, Wiek I, Stêpień E, Zmudka K, Tracz W. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care. 2008;31(8):1590–1595. PubMed PMC
Vaidyula VR, Boden G, Rao AK. Platelet and monocyte activation by hyperglycemia and hyperinsulinemia in healthy subjects. Platelets. 2006;17(8):577–585. PubMed
Vaidyula VR, Rao AK, Mozzoli M, Homko C, Cheung P, Boden G. Effects of hyperglycemia and hyperinsulinemia on circulating tissue factor procoagulant activity and platelet CD40 ligand. Diabetes. 2006;55(1):202–208. PubMed
Blann AD, Nadar SK, Lip GYH. The adhesion molecule P-selectin and cardiovascular disease. European Heart Journal. 2003;24(24):2166–2179. PubMed
Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Journal of Clinical Investigation. 1999;104(6):787–794. PubMed PMC
Donath MY, Halban PA. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia. 2004;47(3):581–589. PubMed
Geddes J, Schopman JE, Zammitt NN, Frier BM. Prevalence of impaired awareness of hypoglycaemia in adults with type 1 diabetes. Diabetic Medicine. 2008;25(4):501–504. PubMed