Irradiated stem cells and ageing of the haematopoietic system
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- buněčné linie MeSH
- celotělové ozáření metody MeSH
- erytrocyty metabolismus účinky záření MeSH
- granulocyty metabolismus účinky záření MeSH
- hematopoetické kmenové buňky cytologie metabolismus účinky záření MeSH
- hematopoéza účinky záření MeSH
- hemoglobiny metabolismus účinky záření MeSH
- histony metabolismus MeSH
- kostní dřeň účinky záření MeSH
- myši MeSH
- trombocyty metabolismus účinky záření MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gamma-H2AX protein, mouse MeSH Prohlížeč
- hemoglobiny MeSH
- histony MeSH
In the work presented here, changes in haematopoiesis of mice (B6129SF2/J) were studied 1 year after their whole-body exposure to a dose of 7 Gy (72% of mice survived). The irradiated mice were compared with non-irradiated younger (4 months of age) and older (16 months of age) mice. There was a significant increase in the relative abundance of primitive stem cells with long-term capability of the haematopoiesis recovery lin(-)/Sca-1(+)/CD117(+)/CD34(-) in the bone marrow of mice aged 16 months (irradiated and non-irradiated) compared with those aged 4 months. In terms of the ability to respond to further whole-body irradiation at a dose of 1 Gy, the presence of γH2A.X foci was studied in lin(-) bone marrow cells. There was a considerable number of persisting foci in lin(-) stem cells isolated from the bone marrow of the older irradiated mice. In the blood count from the peripheral blood of the older mice (both non-irradiated and irradiated at 7 Gy), there was a significant increase in granulocytes. In the group exposed to 7 Gy, the numbers of thrombocytes significantly increased, and on the contrary, the numbers of erythrocytes, the amount of haemoglobin, and haematocrit significantly decreased.
Zobrazit více v PubMed
Blood. 2006 Jan 1;107(1):358-66 PubMed
Radiat Res. 2010 Jan;173(1):40-8 PubMed
Radiat Res. 1987 Feb;109(2):330-41 PubMed
J Radiat Res. 1991 Dec;32 Suppl 2:73-85 PubMed
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5465-70 PubMed
Cell Cycle. 2008 Dec 15;7(24):3798-804 PubMed
Radiat Environ Biophys. 1982;20(3):195-200 PubMed
Nature. 2007 Jun 7;447(7145):725-9 PubMed
Int J Radiat Oncol Biol Phys. 1983 Nov;9(11):1641-6 PubMed
Blood. 2005 Apr 1;105(7):2717-23 PubMed
Free Radic Biol Med. 2010 Jan 15;48(2):348-56 PubMed
Nature. 2007 Jun 7;447(7145):686-90 PubMed
Cancer Res. 1960 Sep;20(8)Pt2:1-60 PubMed
Radiat Res. 2000 Jan;153(1):110-21 PubMed
Biochim Biophys Acta. 2007 Oct;1773(10):1534-45 PubMed
Radiat Res. 1988 Feb;113(2):300-17 PubMed
Radiat Environ Biophys. 1986;25(2):93-106 PubMed
Radiat Res. 1972 Nov;52(2):309-15 PubMed
Cancer Res. 2003 Sep 1;63(17):5414-9 PubMed
Exp Hematol. 2007 Jan;35(1):128-36 PubMed
Cancer Res. 1965 Jan;25:20-8 PubMed
Folia Biol (Praha). 2002;48(2):51-7 PubMed
Exp Hematol. 1986 Sep;14(8):776-81 PubMed
Radiat Res. 1961 Feb;14:213-22 PubMed
Folia Biol (Praha). 1986;32(6):399-405 PubMed
Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9194-9 PubMed
Nucleic Acids Res. 2008 Mar;36(4):1380-9 PubMed
Cytometry. 1999 Aug 1;36(4):279-93 PubMed
PLoS One. 2010 Feb 01;5(2):e8980 PubMed
Cancer Res. 1970 Apr;30(4):913-28 PubMed
Exp Hematol. 1987 Sep;15(8):890-5 PubMed
Semin Hematol. 2008 Oct;45(4):218-24 PubMed
Mutat Res. 1996 Sep 23;356(2):135-45 PubMed
Int J Radiat Biol. 1993 Jan;63(1):59-67 PubMed
Radiat Res. 1996 Oct;146(4):453-60 PubMed