Biodegradation of pyrazosulfuron-ethyl by Acinetobacter sp. CW17
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Acinetobacter genetika izolace a purifikace metabolismus MeSH
- biodegradace MeSH
- fylogeneze MeSH
- herbicidy metabolismus MeSH
- molekulární sekvence - údaje MeSH
- půdní mikrobiologie MeSH
- pyrazoly metabolismus MeSH
- pyrimidiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Čína MeSH
- Názvy látek
- ethyl 5-(4,6-dimethoxypyrimidin-2-ylcarbamoylsulfamoyl)-1-methylpyrazole-4-carboxylate MeSH Prohlížeč
- herbicidy MeSH
- pyrazoly MeSH
- pyrimidiny MeSH
The pyrazosulfuron-ethyl-degrading bacterium, designated as CW17, was isolated from contaminated soil near the warehouse of the factory producing pyrazosulfuron-ethyl in Changsha city, China. The strain CW17 was identified as Acinetobacter sp. based on analyses of 94 carbon source utilization or chemical sensitivity in Biolog microplates, conventional phenotypic characteristics, and 16S rRNA gene sequencing. When pyrazosulfuron-ethyl was provided as the sole carbon source, the effects of pyrazosulfuron-ethyl concentration, pH, and temperature on biodegradation were examined. The degradation rates of pyrazosulfuron-ethyl at initial concentrations of 5.0, 20.0, and 50.0 mg/L were 48.0%, 77.0%, and 32.6%, respectively, after inoculation for 7 days. The growth of the strain was inhibited at low pH buffers. The chemical degradation occurs much faster at low pH than at neutral and basic pH conditions. The degradation rate of pyrazosulfuron-ethyl at 30°C was faster than those at 20 and 37°C by CW17 strains. Two metabolites of degradation were analyzed by liquid chromatography-mass spectroscopy (LC/MS). Based on the identified products, strain CW17 seemed to be able to degrade pyrazosulfuron-ethyl by cleavage of the sulfonylurea bridge.
Zobrazit více v PubMed
Biochim Biophys Acta. 2003 Jun 11;1621(3):261-5 PubMed
Pest Manag Sci. 2011 Nov;67(11):1451-6 PubMed
J Environ Sci Health B. 2003 Nov;38(6):737-46 PubMed
Chemosphere. 2007 Jul;68(7):1312-7 PubMed
J Environ Sci Health B. 2010 Aug;45(6):501-7 PubMed
Spectrochim Acta A Mol Biomol Spectrosc. 2010 Mar;75(3):1088-94 PubMed
Mol Biol Evol. 2011 Oct;28(10):2731-9 PubMed
J Environ Sci (China). 2009;21(1):76-82 PubMed
Chemosphere. 2002 Feb;46(6):797-807 PubMed
Curr Microbiol. 2007 Nov;55(5):420-6 PubMed
J Hazard Mater. 2008 Oct 1;158(1):208-14 PubMed
J Agric Food Chem. 2002 Feb 27;50(5):1081-8 PubMed
Curr Microbiol. 2011 Jun;62(6):1718-25 PubMed
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2009 Feb 1;44(2):130-6 PubMed
FEMS Microbiol Lett. 2009 Jun;296(2):203-9 PubMed
ScientificWorldJournal. 2002 May 31;2:1501-6 PubMed
J Appl Microbiol. 2006 Aug;101(2):443-52 PubMed
Chemosphere. 2009 Feb;74(5):682-7 PubMed
BMC Microbiol. 2009 Jan 08;9:4 PubMed
J Agric Food Chem. 2008 Aug 27;56(16):7367-72 PubMed
J Environ Sci (China). 2009;21(9):1253-60 PubMed
Mass Spectrom Rev. 2010 Jul-Aug;29(4):593-605 PubMed
J Agric Food Chem. 2000 Jun;48(6):2565-71 PubMed
Chemosphere. 2005 Jul;60(4):460-6 PubMed
J Environ Sci Health B. 2001 Sep;36(5):581-95 PubMed
GENBANK
JN243750