Narrative review on Morbus Fabry: diagnosis and management of cardiac manifestations

. 2021 Apr ; 11 (2) : 650-660.

Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33968642

Fabry disease (FD) is an X-linked lysosomal storage disorder due to reduced or undetectable α-galactosidase A (AGAL-A) enzyme activity caused by pathogenic variants in the AGAL-A gene (GLA). Tissue and organ changes are caused by widespread progressive accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). The classical form of FD is multisystemic with cutaneous (angiokeratomas), neurological (peripheral neuropathy, premature stroke), renal (proteinuria and renal insufficiency), and cardiac involvement. Later onset variants may be limited to the heart. The objective of this review is to summarize the current knowledge on cardiac manifestations of FD and effects of targeted therapy. Cardiac involvement is characterized by progressive hypertrophy, fibrosis, arrhythmias, heart failure and sudden cardiac death (SCD). Targeted therapy is based on enzyme replacement therapy (ERT). Recently, small molecular chaperone, migalastat, became available for patients carrying amenable pathogenic GLA variants. The management of cardiac complications requires a complex approach. Several measures differ from standard clinical guidelines. Betablockers should be used with caution due to bradycardia risk, amiodarone avoided if possible, and anticoagulation used from the first appearance of atrial fibrillation. In Fabry cardiomyopathy SCD calculators are inappropriate. The awareness of FD manifestations is essential for early identification of patients and timely treatment initiation.

Zobrazit více v PubMed

Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A 2008;105:2812-7. 10.1073/pnas.0712309105 PubMed DOI PMC

Banikazemi M, Bultas J, Waldek S, et al. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med 2007;146:77-86. 10.7326/0003-4819-146-2-200701160-00148 PubMed DOI

Schiffmann R, Kopp JB, Austin HA, 3rd, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 2001;285:2743-9. 10.1001/jama.285.21.2743 PubMed DOI

Benjamin ER, Della Valle MC, Wu X, et al. The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Genet Med 2017;19:430-8. 10.1038/gim.2016.122 PubMed DOI PMC

Germain DP, Hughes DA, Nicholls K, et al. Treatment of Fabry's Disease with the Pharmacologic Chaperone Migalastat. N Engl J Med 2016;375:545-55. 10.1056/NEJMoa1510198 PubMed DOI

Smid BE, van der Tol L, Cecchi F, et al. Uncertain diagnosis of Fabry disease: consensus recommendation on diagnosis in adults with left ventricular hypertrophy and genetic variants of unknown significance. Int J Cardiol 2014;177:400-8. 10.1016/j.ijcard.2014.09.001 PubMed DOI

Dobrovolny R, Dvorakova L, Ledvinova J, et al. Relationship between X-inactivation and clinical involvement in Fabry heterozygotes. Eleven novel mutations in the alpha-galactosidase A gene in the Czech and Slovak population. J Mol Med (Berl) 2005;83:647-54. 10.1007/s00109-005-0656-2 PubMed DOI

Echevarria L, Benistan K, Toussaint A, et al. X-chromosome inactivation in female patients with Fabry disease. Clin Genet 2016;89:44-54. 10.1111/cge.12613 PubMed DOI

Spada M, Pagliardini S, Yasuda M, et al. High incidence of later-onset fabry disease revealed by newborn screening. Am J Hum Genet 2006;79:31-40. 10.1086/504601 PubMed DOI PMC

Lin HY, Chong KW, Hsu JH, et al. High incidence of the cardiac variant of Fabry disease revealed by newborn screening in the Taiwan Chinese population. Circ Cardiovasc Genet 2009;2:450-6. 10.1161/CIRCGENETICS.109.862920 PubMed DOI

Azevedo O, Gal A, Faria R, et al. Founder effect of Fabry disease due to p.F113L mutation: Clinical profile of a late-onset phenotype. Mol Genet Metab 2020;129:150-60. 10.1016/j.ymgme.2019.07.012 PubMed DOI

Doheny D, Srinivasan R, Pagant S, et al. Fabry Disease: prevalence of affected males and heterozygotes with pathogenic GLA mutations identified by screening renal, cardiac and stroke clinics, 1995-2017. J Med Genet 2018;55:261-8. 10.1136/jmedgenet-2017-105080 PubMed DOI

Elliott P, Baker R, Pasquale F, et al. Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson-Fabry Disease survey. Heart 2011;97:1957-60. 10.1136/heartjnl-2011-300364 PubMed DOI

Talbot AS, Lewis NT, Nicholls KM. Cardiovascular outcomes in Fabry disease are linked to severity of chronic kidney disease. Heart 2015;101:287-93. 10.1136/heartjnl-2014-306278 PubMed DOI

Germain DP, Brand E, Burlina A, et al. Phenotypic characteristics of the p.Asn215Ser (p.N215S) GLA mutation in male and female patients with Fabry disease: A multicenter Fabry Registry study. Mol Genet Genomic Med 2018;6:492-503. 10.1002/mgg3.389 PubMed DOI PMC

Linhart A, Kampmann C, Zamorano JL, et al. Cardiac manifestations of Anderson-Fabry disease: results from the international Fabry outcome survey. Eur Heart J 2007;28:1228-35. 10.1093/eurheartj/ehm153 PubMed DOI

Moon JC, Sheppard M, Reed E, et al. The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease. J Cardiovasc Magn Reson 2006;8:479-82. 10.1080/10976640600605002 PubMed DOI

Linhart A, Cecchi F. Common presentation of rare diseases: Left ventricular hypertrophy and diastolic dysfunction. Int J Cardiol 2018;257:344-50. 10.1016/j.ijcard.2018.01.006 PubMed DOI

Linhart A, Palecek T, Bultas J, et al. New insights in cardiac structural changes in patients with Fabry's disease. Am Heart J 2000;139:1101-8. 10.1067/mhj.2000.105105 PubMed DOI

O'Mahony C, Coats C, Cardona M, et al. Incidence and predictors of anti-bradycardia pacing in patients with Anderson-Fabry disease. Europace 2011;13:1781-8. 10.1093/europace/eur267 PubMed DOI

Krämer J, Niemann M, Störk S, et al. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease. Am J Cardiol 2014;114:895-900. 10.1016/j.amjcard.2014.06.019 PubMed DOI

Niemann M, Hartmann T, Namdar M, et al. Cross-sectional baseline analysis of electrocardiography in a large cohort of patients with untreated Fabry disease. J Inherit Metab Dis 2013;36:873-9. 10.1007/s10545-012-9540-8 PubMed DOI

Weidemann F, Maier SK, Störk S, et al. Usefulness of an Implantable Loop Recorder to Detect Clinically Relevant Arrhythmias in Patients With Advanced Fabry Cardiomyopathy. Am J Cardiol 2016;118:264-74. 10.1016/j.amjcard.2016.04.033 PubMed DOI

Niemann M, Liu D, Hu K, et al. Prominent papillary muscles in Fabry disease: a diagnostic marker? Ultrasound Med Biol 2011;37:37-43. 10.1016/j.ultrasmedbio.2010.10.017 PubMed DOI

Palecek T, Dostalova G, Kuchynka P, et al. Right ventricular involvement in Fabry disease. J Am Soc Echocardiogr 2008;21:1265-8. 10.1016/j.echo.2008.09.002 PubMed DOI

Krämer J, Niemann M, Liu D, et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease. Eur Heart J 2013;34:1587-96. 10.1093/eurheartj/eht098 PubMed DOI

Mundigler G, Gaggl M, Heinze G, et al. The endocardial binary appearance ('binary sign') is an unreliable marker for echocardiographic detection of Fabry disease in patients with left ventricular hypertrophy. Eur J Echocardiogr 2011;12:744-9. 10.1093/ejechocard/jer112 PubMed DOI

Marek J, Palecek T, Magne J, et al. Comparison of echocardiographic parameters in Fabry cardiomyopathy and light-chain cardiac amyloidosis. Echocardiography 2018;35:1755-63. 10.1111/echo.14144 PubMed DOI

Moon JC, Sachdev B, Elkington AG, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 2003;24:2151-5. 10.1016/j.ehj.2003.09.017 PubMed DOI

Sado DM, White SK, Piechnik SK, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013;6:392-8. 10.1161/CIRCIMAGING.112.000070 PubMed DOI

Thompson RB, Chow K, Khan A, et al. T1 mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 2013;6:637-45. 10.1161/CIRCIMAGING.113.000482 PubMed DOI

Nordin S, Kozor R, Medina-Menacho K, et al. Proposed Stages of Myocardial Phenotype Development in Fabry Disease. JACC Cardiovasc Imaging 2019;12:1673-83. 10.1016/j.jcmg.2018.03.020 PubMed DOI

Elliott PM, Kindler H, Shah JS, et al. Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart 2006;92:357-60. 10.1136/hrt.2004.054015 PubMed DOI PMC

Tomberli B, Cecchi F, Sciagrà R, et al. Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease. Eur J Heart Fail 2013;15:1363-73. 10.1093/eurjhf/hft104 PubMed DOI

Kovarnik T, Mintz GS, Karetova D, et al. Intravascular ultrasound assessment of coronary artery involvement in Fabry disease. J Inherit Metab Dis 2008;31:753-60. 10.1007/s10545-008-0794-0 PubMed DOI

Ferreira S, Auray-Blais C, Boutin M, et al. Variations in the GLA gene correlate with globotriaosylceramide and globotriaosylsphingosine analog levels in urine and plasma. Clin Chim Acta 2015;447:96-104. 10.1016/j.cca.2015.06.003 PubMed DOI PMC

Nowak A, Mechtler T, Kasper DC, et al. Correlation of Lyso-Gb3 levels in dried blood spots and sera from patients with classic and Later-Onset Fabry disease. Mol Genet Metab 2017;121:320-4. 10.1016/j.ymgme.2017.06.006 PubMed DOI

Coats CJ, Parisi V, Ramos M, et al. Role of serum N-terminal pro-brain natriuretic peptide measurement in diagnosis of cardiac involvement in patients with anderson-fabry disease. Am J Cardiol 2013;111:111-7. 10.1016/j.amjcard.2012.08.055 PubMed DOI

Seydelmann N, Liu D, Krämer J, et al. High-Sensitivity Troponin: A Clinical Blood Biomarker for Staging Cardiomyopathy in Fabry Disease. J Am Heart Assoc 2016;5:e002839. 10.1161/JAHA.115.002839 PubMed DOI PMC

Hsu TR, Sung SH, Chang FP, et al. Endomyocardial biopsies in patients with left ventricular hypertrophy and a common Chinese later-onset Fabry mutation (IVS4 + 919G > A). Orphanet J Rare Dis 2014;9:96. 10.1186/1750-1172-9-96 PubMed DOI PMC

Reuser AJ, Verheijen FW, Bali D, et al. The use of dried blood spot samples in the diagnosis of lysosomal storage disorders--current status and perspectives. Mol Genet Metab 2011;104:144-8. 10.1016/j.ymgme.2011.07.014 PubMed DOI

Desnick RJ, Desnick SJ, Raman MK, et al. Fabry's disease: enzymatic diagnosis of hemizygotes and heterozygotes. Alpha-galactosidase activities in plasma, serum, urine, and leukocytes. J Lab Clin Med 1973;81:157-71. PubMed

Rombach SM, Dekker N, Bouwman MG, et al. Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta 2010;1802:741-8. 10.1016/j.bbadis.2010.05.003 PubMed DOI

Ortiz A, Germain DP, Desnick RJ, et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab 2018;123:416-27. 10.1016/j.ymgme.2018.02.014 PubMed DOI

Germain DP, Waldek S, Banikazemi M, et al. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol 2007;18:1547-57. 10.1681/ASN.2006080816 PubMed DOI

Germain DP, Charrow J, Desnick RJ, et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet 2015;52:353-8. 10.1136/jmedgenet-2014-102797 PubMed DOI PMC

Lobo T, Bjorksten JM, Nicholls K, et al. Cardiovascular testing in Fabry disease: exercise capacity reduction, chronotropic incompetence and improved anaerobic threshold after enzyme replacement. Intern Med J 2008;38:407-14. 10.1111/j.1445-5994.2008.01669.x PubMed DOI

Kampmann C, Linhart A, Devereux RB, et al. Effect of agalsidase alfa replacement therapy on Fabry disease-related hypertrophic cardiomyopathy: a 12- to 36-month, retrospective, blinded echocardiographic pooled analysis. Clin Ther 2009;31:1966-76. 10.1016/j.clinthera.2009.09.008 PubMed DOI

Ortiz A, Abiose A, Bichet DG, et al. Time to treatment benefit for adult patients with Fabry disease receiving agalsidase beta: data from the Fabry Registry. J Med Genet 2016;53:495-502. 10.1136/jmedgenet-2015-103486 PubMed DOI PMC

Weidemann F, Niemann M, Störk S, et al. Long-term outcome of enzyme-replacement therapy in advanced Fabry disease: evidence for disease progression towards serious complications. J Intern Med 2013;274:331-41. 10.1111/joim.12077 PubMed DOI PMC

Weidemann F, Niemann M, Breuning F, et al. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation 2009;119:524-9. 10.1161/CIRCULATIONAHA.108.794529 PubMed DOI

Lenders M, Brand E. Effects of Enzyme Replacement Therapy and Antidrug Antibodies in Patients with Fabry Disease. J Am Soc Nephrol 2018;29:2265-78. 10.1681/ASN.2018030329 PubMed DOI PMC

Stappers F, Scharmetzki D, Schmitz D, et al. Neutralising anti-drug antibodies in Fabry disease can inhibit endothelial enzyme uptake and activity. J Inherit Metab Dis 2020;43:334-47. 10.1002/jimd.12176 PubMed DOI

Lenders M, Neusser LP, Rudnicki M, et al. Dose-Dependent Effect of Enzyme Replacement Therapy on Neutralizing Antidrug Antibody Titers and Clinical Outcome in Patients with Fabry Disease. J Am Soc Nephrol 2018;29:2879-89. 10.1681/ASN.2018070740 PubMed DOI PMC

Hughes DA, Nicholls K, Shankar SP, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet 2017;54:288-96. 10.1136/jmedgenet-2016-104178 PubMed DOI PMC

Lenders M, Nordbeck P, Kurschat C, et al. Treatment of Fabry's Disease With Migalastat: Outcome From a Prospective Observational Multicenter Study (FAMOUS). Clin Pharmacol Ther 2020;108:326-37. 10.1002/cpt.1832 PubMed DOI

Schiffmann R, Goker-Alpan O, Holida M, et al. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease, provides sustained plasma concentrations and favorable pharmacodynamics: A 1-year Phase 1/2 clinical trial. J Inherit Metab Dis 2019;42:534-44. 10.1002/jimd.12080 PubMed DOI

Shen JS, Busch A, Day TS, et al. Mannose receptor-mediated delivery of moss-made alpha-galactosidase A efficiently corrects enzyme deficiency in Fabry mice. J Inherit Metab Dis 2016;39:293-303. 10.1007/s10545-015-9886-9 PubMed DOI PMC

Ashe KM, Budman E, Bangari DS, et al. Efficacy of Enzyme and Substrate Reduction Therapy with a Novel Antagonist of Glucosylceramide Synthase for Fabry Disease. Mol Med 2015;21:389-99. 10.2119/molmed.2015.00088 PubMed DOI PMC

Simonetta I, Tuttolomondo A, Di Chiara T, et al. Genetics and Gene Therapy of Anderson-Fabry Disease. Curr Gene Ther 2018;18:96-106. 10.2174/1566523218666180404161315 PubMed DOI

Ikeda K, Hirayama M, Hirota Y, et al. Drug-induced phospholipidosis is caused by blockade of mannose 6-phosphate receptor-mediated targeting of lysosomal enzymes. Biochem Biophys Res Commun 2008;377:268-74. 10.1016/j.bbrc.2008.09.121 PubMed DOI

Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139-51. 10.1056/NEJMoa0905561 PubMed DOI

Baig S, Edward NC, Kotecha D, et al. Ventricular arrhythmia and sudden cardiac death in Fabry disease: a systematic review of risk factors in clinical practice. Europace 2018;20:f153-61. 10.1093/europace/eux261 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...