Stray dogs of northern Jordan as reservoirs of ticks and tick-borne hemopathogens
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Anaplasma phagocytophilum genetics isolation & purification MeSH
- Babesia genetics isolation & purification MeSH
- Coccidia genetics isolation & purification MeSH
- Ectoparasitic Infestations parasitology veterinary MeSH
- Ixodidae classification growth & development MeSH
- Blood microbiology parasitology MeSH
- Molecular Sequence Data MeSH
- Tick-Borne Diseases microbiology parasitology veterinary MeSH
- Dog Diseases microbiology parasitology MeSH
- Polymerase Chain Reaction MeSH
- Dogs MeSH
- Sequence Analysis, DNA MeSH
- Theileria genetics isolation & purification MeSH
- Disease Reservoirs * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Jordan MeSH
Dogs are competent reservoir hosts of several hemopathogens including zoonotic agents and can serve as readily available source of nutrition for many blood-feeding arthropods. Three hemopathogens had been detected for the first time in Jordan. The PCR prevalence of Anaplasma phagocytophilum, Hepatozoon canis, and piroplasmid DNA were 39.5%, 28.9%, and 7.9% (n=38) respectively. Sequencing of amplicons of PCR with universal primers targeting the 18S rRNA gene of piroplasmids shows the highest similarity to equine piroplasmids species Theileria equi from two dogs and Babesia caballi from a single dog. Ticks of two genera Rhipicephalus and Haemaphysalis, were detected in this study (n=268). The brown dog tick, Rhipicephalus sanguineus was the most abundant species (95.1%, n=255), followed by Haemaphysalis erinacei (3%, n=8) and Haemaphysalis parva (1.9%, n=5). The two Haemaphysalis species were detected for the first time from dogs in Jordan. Regarding its high prevalence, we expect R. sanguineus being a possible vector of detected pathogens.
See more in PubMed
Vet Parasitol. 1983 Sep;13(2):171-81 PubMed
Vet Parasitol. 2003 May 1;113(3-4):189-201 PubMed
Trans R Soc Trop Med Hyg. 2010 Jan;104(1):10-5 PubMed
Parasitol Res. 2007 Sep;101 Suppl 2:S175-7 PubMed
Trends Parasitol. 2003 Jan;19(1):27-31 PubMed
Vet Clin North Am Small Anim Pract. 2010 Nov;40(6):1141-56 PubMed
Vet Parasitol. 2011 Jun 30;179(1-3):246-9 PubMed
J Clin Microbiol. 1994 Mar;32(3):589-95 PubMed
J Clin Microbiol. 2000 Jan;38(1):354-6 PubMed
Korean J Parasitol. 2007 Jun;45(2):129-32 PubMed
Ann Trop Med Parasitol. 1994 Dec;88(6):623-7 PubMed
Exp Appl Acarol. 1999 Sep;23(9):685-715 PubMed
Exp Appl Acarol. 1996 Jan;20(1):47-56 PubMed
Bull World Health Organ. 1957;16(5):911-28 PubMed
Vet Parasitol. 2002 Jun 26;106(3):265-71 PubMed
Vet Parasitol. 2009 Dec 3;166(1-2):171-4 PubMed
J Parasitol. 1959 Apr;45(2):227-32 PubMed
Vet Res. 2004 May-Jun;35(3):363-8 PubMed
Trends Parasitol. 2009 Apr;25(4):157-63 PubMed
Parasitology. 2004;129 Suppl:S3-14 PubMed
Parasitol Res. 1998 Jul;84(7):544-8 PubMed
Parasitol Res. 2007 Sep;101 Suppl 2:S179-81 PubMed
Emerg Infect Dis. 2007 Sep;13(9):1411-2 PubMed
J Clin Microbiol. 1999 Aug;37(8):2631-8 PubMed
Emerg Infect Dis. 1999 Nov-Dec;5(6):775-8 PubMed
Int J Parasitol. 2009 Jun;39(7):843-8 PubMed
J Med Entomol. 2001 May;38(3):458-61 PubMed
Vet Parasitol. 2008 Apr 15;152(3-4):173-85 PubMed
Can Vet J. 2007 Jun;48(6):619-22 PubMed
Vet Clin Pathol. 2004;33(4):249-51 PubMed
Vet Parasitol. 1998 Jan 31;74(2-4):133-42 PubMed
Vet Parasitol. 2006 Jan 30;135(2):113-9 PubMed
Mol Biochem Parasitol. 1996 Jan;75(2):197-205 PubMed
Clin Microbiol Infect. 2001 Feb;7(2):80-3 PubMed
Clin Microbiol Infect. 2009 Dec;15 Suppl 2:10-1 PubMed
Parasitol Res. 2010 May;106(6):1339-42 PubMed
GENBANK
JF827602, JF827603, JF827604, JF827605, JF827606, JN033795, JN033796, JN033797, JN033798, JN033799