Association between polymorphism in the FTO gene and growth and carcass traits in pig crosses
Jazyk angličtina Země Francie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22510482
PubMed Central
PMC3369214
DOI
10.1186/1297-9686-44-13
PII: 1297-9686-44-13
Knihovny.cz E-zdroje
- MeSH
- dioxygenasy genetika MeSH
- frekvence genu MeSH
- genetické asociační studie MeSH
- genetické lokusy MeSH
- jednonukleotidový polymorfismus * MeSH
- mapování chromozomů MeSH
- modely genetické MeSH
- ryanodinový receptor vápníkového kanálu genetika MeSH
- složení těla genetika MeSH
- Sus scrofa anatomie a histologie genetika růst a vývoj MeSH
- transformující růstový faktor beta1 genetika MeSH
- tuková tkáň anatomie a histologie MeSH
- vazebná nerovnováha MeSH
- záda anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dioxygenasy MeSH
- ryanodinový receptor vápníkového kanálu MeSH
- transformující růstový faktor beta1 MeSH
BACKGROUND: Independent studies have shown that several single nucleotide polymorphisms (SNP) in the human FTO (fat mass and obesity associated) gene are associated with obesity. SNP have also been identified in the pig FTO gene, among which some are associated with selected fat-deposition traits in F2 crosses and commercial populations. In this study, using both commercial pig populations and an experimental Meishan × Pietrain F2 population, we have investigated the association between one FTO SNP and several growth and carcass traits. Association analyses were performed with the FTO polymorphism either alone or in combination with polymorphisms in flanking loci. METHODS: SNP (FM244720:g.400C>G) in exon 3 of porcine FTO was genotyped by PCR-RFLP and tested for associations with some growth, carcass and fat-related traits. Proportions of genetic variance of four pig chromosome 6 genes (FTO, RYR1, LIPE and TGFB1) on selected traits were evaluated using single- and multi-locus models. RESULTS: Linkage analysis placed FTO on the p arm of pig chromosome 6, approximately 22 cM from RYR1. In the commercial populations, allele C of the FTO SNP was significantly associated with back fat depth and allele G with muscling traits. In the Meishan × Pietrain F2 pigs, heterozygotes with allele C from the Pietrain sows and allele G from the Meishan boar were more significantly associated with fat-related traits compared to homozygotes with allele G from the Pietrain and allele G from the Meishan breed. In single- and multi-locus models, genes RYR1, TGFB1 and FTO showed high associations. The contribution in genetic variance from the polymorphism in the FTO gene was highest for back fat depth, meat area on the musculus longissimus lumborum et thoracis tissues and metabolite glucose-6-phosphate dehydrogenase. CONCLUSIONS: Our results show that in pig, FTO influences back fat depth in the commercial populations, while in the Meishan × Pietrain F2 pigs with a CG genotype, heterosis occurs for several fat-related traits.
Zobrazit více v PubMed
van der Hoeven F, Schimmang T, Volkmann A, Mattei M-G, Kyewski B, Rüther U. Programmed cell death is affected in the novel mouse mutant Fused toes (Ft) Development. 1994;120:2601–2607. PubMed
Peters T, Ausmeier K, Rüther U. Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm Genome. 1999;10:983–986. doi: 10.1007/s003359901144. PubMed DOI
Peters T, Ausmeier K, Dildrop R, Rüther U. The mouse Fused toes (Ft) mutation is the result of a 1.6-Mb deletion including the entire Iroquois B gene cluster. Mamm Genome. 2002;13:186–188. doi: 10.1007/s00335-001-2142-7. PubMed DOI
Gerken T, Girard CA, Tung Y-CL, Webby CJ, Saudek V, Hewitson KS, Yeo GSH, McDonough MA, Cunliffe S, McNeill LA, Galvanovskis J, Rorsman P, Robins P, Prieur X, Coll AP, Ma M, Jovanovic Z, Farooqi IS, Sedgwick B, Barroso I, Lindahl T, Ponting CP, Ashcroft FM, O'Rahilly S, Schofield CJ. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318:1469–1472. doi: 10.1126/science.1151710. PubMed DOI PMC
Sanchez-Pulido L, Andrade-Navarro MA. The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem. 2007;8:23. doi: 10.1186/1471-2091-8-23. PubMed DOI PMC
Wu Q, Saunders RA, Szkudlarek-Mikho M, de la Serna I, Chin K-V. The obesity-associated Fto gene is a transcriptional coactivator. Biochem Biophys Res Commun. 2010;401:390–395. doi: 10.1016/j.bbrc.2010.09.064. PubMed DOI PMC
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch A-M, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin M-R, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJF, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CNA, Doney ASF, Morris AD, Smith GD, Hattersley AT, McCarthy MI. The Wellcome Trust Case Control Consortium. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–894. doi: 10.1126/science.1141634. PubMed DOI PMC
Scuteri A, Sanna S, Chen W-M, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:e115. doi: 10.1371/journal.pgen.0030115. PubMed DOI PMC
Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LMS, Kiess W, Vatin V, Lecoeur C, Delplanque J, Vaillant E, Pattou F, Ruiz J, Weill J, Levy-Marchal C, Horber F, Potoczna N, Hercberg S, Le Stunff C, Bougnères P, Kovacs P, Marre M, Balkau B, Cauchi S, Chèvre J-C, Froguel P. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39:724–726. doi: 10.1038/ng2048. PubMed DOI
Hinney A, Nguyen TT, Scherag A, Friedel S, Brönner G, Müller TD, Grallert H, Illig T, Wichmann H-E, Rief W, Schäfer H, Hebebrand J. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE. 2007;2:e1361. doi: 10.1371/journal.pone.0001361. PubMed DOI PMC
Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CNA. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359:2558–2566. doi: 10.1056/NEJMoa0803839. PubMed DOI
Loos RJF, Bouchard C. FTO: the first gene contributing to common forms of human obesity. Obes Rev. 2008;9:246–250. doi: 10.1111/j.1467-789X.2008.00481.x. PubMed DOI
Larder R, Cheung MKM, Tung YCL, Yeo GSH, Coll AP. Where to go with FTO? Trends Endocrinol Metabol. 2011;22:53–59. doi: 10.1016/j.tem.2010.11.001. PubMed DOI
Onteru SK, Fan B, Rothschild MF. SNP detection and comparative linkage mapping of 66 bone-related genes in the pig. Cytogenet Genome Res. 2008;122:122–131. doi: 10.1159/000163089. PubMed DOI
Fontanesi L, Scotti E, Buttazzoni L, Davoli R, Russo V. The porcine fat mass and obesity associated (FTO) gene is associated with fat deposition in Italian Duroc pigs. Anim Genet. 2009;40:90–93. doi: 10.1111/j.1365-2052.2008.01777.x. PubMed DOI
Fontanesi L, Scotti E, Buttazzoni L, Dall'Olio S, Bagnato A, Lo Fiego DP, Davoli R, Russo V. Confirmed association between a single nucleotide polymorphism in the FTO gene and obesity-related traits in heavy pigs. Mol Biol Rep. 2010;37:461–466. doi: 10.1007/s11033-009-9638-8. PubMed DOI
Archibald AL, Bolund L, Churcher C, Fredholm M, Groenen MAM, Harlizius B, Lee K-T, Milan D, Rogers J, Rothschild MF, Uenishi H, Wang J, Schook LB. for the Swine Genome Sequencing Consortium. Pig genome sequence - analysis and publication strategy. BMC Genomics. 2010;11:438. doi: 10.1186/1471-2164-11-438. PubMed DOI PMC
Fan B, Du Z-Q, Rothschild MF. The fat mass and obesity-associated (FTO) gene is associated with intramuscular fat content and growth rate in the pig. Anim Biotechnol. 2009;20:58–70. doi: 10.1080/10495390902800792. PubMed DOI
Zhang LF, Miao XT, Hua XC, Jiang XL, Lu YP, Xu NY. Polymorphism in 5' regulatory region of the porcine fat mass and obesity associated (FTO) gene is associated with intramuscular fat content in a Jinhua × Pietrain F2 reference population. J Anim Vet Adv. 2009;8:2329–2334.
Sellier P. In: The Genetics of the Pig. Rothschild MF, Ruvinsky A, editor. Wallingford: CAB Intl; 1998. Genetics of meat and carcass traits; pp. 463–510.
Yeaman SJ. Hormone-sensitive lipase - new roles for an old enzyme. Biochem J. 2004;379:11–22. doi: 10.1042/BJ20031811. PubMed DOI PMC
Rosmond R, Chagnon M, Bouchard C, Björntorp P. Increased abdominal obesity, insulin and glucose levels in nondiabetic subjects with a T29C polymorphism of the transforming growth factor-beta(1) gene. Hormone Res. 2003;59:191–194. doi: 10.1159/000069323. PubMed DOI
Long J-R, Liu P-Y, Liu Y-J, Lu Y, Xiong D-H, Elze L, Recker RR, Deng H-W. APOE and TGF-β1 genes are associated with obesity phenotypes. J Med Genet. 2003;40:918–924. doi: 10.1136/jmg.40.12.918. PubMed DOI PMC
Geldermann H, Müller E, Moser G, Reiner G, Bartenschlager H, Cepica S, Stratil A, Kuryl J, Moran C, Davoli R, Brunsch C. Genome-wide linkage and QTL mapping in porcine F2 families generated from Pietrain, Meishan and Wild Boar crosses. J Anim Breed Genet. 2003;120:363–393. doi: 10.1046/j.0931-2668.2003.00408.x. DOI
Green P, Falls K, Crooks S. Documentation for CRI-MAP, Version 2.4. St Louis: Washington University School of Medicine; 1990.
Stupka R, Šprysl M, Pour M. Analysis of the formation of the belly in relation to sex. Czech J Anim Sci. 2004;49:64–70.
Geldermann H, Čepica S, Stratil A, Bartenschlager H, Preuss S. Genome-wide mapping of quantitative trait loci for fatness, fat cell characteristics and fat metabolism in three porcine F2 crosses. Genet Sel Evol. 2010;42:31. doi: 10.1186/1297-9686-42-31. PubMed DOI PMC
Yue G, Stratil A, Kopecny M, Schröffelova D, Schröffel J Jr, Hojny J, Cepica S, Davoli R, Zambonelli P, Brunsch C, Sternstein I, Moser G, Bartenschlager H, Reiner G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome 6. J Anim Breed Genet. 2003;120(Suppl 1):45–55.
Zhao F, Miller LM, Chardon P, Rogel-Gaillard C, Louis CF. Five new polymorphic microsatellite markers for pig chromosome 6p. Anim Genet. 1999;30:394–395. PubMed
Meyers SN, Rogatcheva MB, Larkin DM, Yerle M, Milan D, Hawken RJ, Schook LB, Beever JE. Piggy-BACing the human genome - II. A high-resolution, physically anchored, comparative map of the porcine autosomes. Genomics. 2005;86:739–752. doi: 10.1016/j.ygeno.2005.04.010. PubMed DOI
Du Z-Q, Fan B, Zhao X, Amoako R, Rothschild MF. Association analyses between type 2 diabetes genes and obesity traits in pigs. Obesity. 2009;17:323–329. PubMed
Mohrmann M, Roehe R, Knap PW, Looft H, Plastow GS, Kalm E. Quantitative trait loci associated with AutoFOM grading characteristics, carcass cuts and chemical body composition during growth of Sus scrofa. Anim Genet. 2006;37:435–443. doi: 10.1111/j.1365-2052.2006.01492.x. PubMed DOI
Paszek AA, Wilkie PJ, Flickinger GH, Miller LM, Louis CF, Rohrer GA, Alexander LJ, Beattie CW, Schook LB. Interval mapping of carcass and meat quality traits in a divergent swine cross. Anim Biotechnol. 2001;12:155–165. doi: 10.1081/ABIO-100108342. PubMed DOI
Óvilo C, Fernández A, Noguera JL, Barragán C, Letón R, Rodríguez C, Mercadé A, Alves E, Folch JM, Varona L, Toro M. Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross. Genet Res. 2005;85:57–67. doi: 10.1017/S0016672305007330. PubMed DOI
Stratil A, Horák P, Filkuková J, Van Poucke M, Bartenschlager H, Peelman LJ, Geldermann H. Partial genomic structure, mutation analysis and mapping of the porcine inhibitor of DNA binding genes ID1, ID2, ID3 and ID4. Anim Genet. 2010;41:558–559. doi: 10.1111/j.1365-2052.2010.02065.x. PubMed DOI
Brem G, Brenig B. Molecular genotype diagnosis of the malignant hyperthermia syndrome for efficient breeding of stress-resistant pigs. Wiener Tierärztl Monatsschr. 1992;79:301–305.
Otsu K, Phillips MS, Khanna VK, De Leon S, MacLennan DH. Refinement of diagnostic assays for a probable causal mutation for porcine and human malignant hyperthermia. Genomics. 1992;13:835–837. doi: 10.1016/0888-7543(92)90163-M. PubMed DOI
Knoll A, Stratil A, Nebola M, Čepica S. Characterization of a polymorphism in exon 1 of the porcine hormone-sensitive lipase (LIPE) gene. Anim Genet. 1998;29:462–463. PubMed
Kopečný M, Stratil A, Van Poucke M, Bartenschlager H, Geldermann H, Peelman LJ. PCR-RFLPs, linkage and RH mapping of the porcine TGFB1 and TGFBR1 genes. Anim Genet. 2004;35:253–255. doi: 10.1111/j.1365-2052.2004.01130.x. PubMed DOI