Electrochemical behavior of quinoxalin-2-one derivatives at mercury electrodes and its analytical use

. 2012 ; 2012 () : 409378. [epub] 20120430

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22666117

Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in the position 4 precedes the electron acceptance forming a semiquinone radical intermediate which is relatively stable in acidic solutions. Its further reduction is manifested by separated current signal. A positive mesomeric effect of the nonprotonized amino group in the position 7 of the derivative III accelerates the semiquinone reduction yielding a single current wave. The suggested reaction mechanism was verified by means of direct current polarography, differential pulse, cyclic and elimination voltammetry, and coulometry with subsequent GC/MS analysis. The understanding of the mechanism was applied in developing of analytical method for the determination of the studied compounds.

Zobrazit více v PubMed

Leng F, Chaires JB, Waring MJ. Energetics of echinomycin binding to DNA. Nucleic Acids Research. 2003;31(21):6191–6197. PubMed PMC

May LG, Madine MA, Waring MJ. Echinomycin inhibits chromosomal DNA replication and embryonic development in vertebrates. Nucleic Acids Research. 2004;32(1):65–72. PubMed PMC

El Ashry ESH, Abdel-Rahman AAH, Rashed N, Rasheed HA. Homoacyclovir analogues of unnatural bases and their activity against hepatitis B virus. Pharmazie. 1999;54(12):893–897. PubMed

Kuroya M, Yoshida T, Shiratori O, et al. Studies on quinoxaline antibiotics. 1. General properties and the producing strains. The Journal of Antibiotics. 1961;14:324–329.

Shoji JI, Katagiri K. Studies on quinoxaline antibiotics. II. New antibiotics, triostins A, B and C. The Journal of Antibiotics. 1961;14:335–339. PubMed

Corbaz R, Ettlinger L, Gaumann E, et al. Stoffwechselprodukte Von Actinomyceten. 7. Echinomycin. Helvetica Chimica Acta. 1957;40:199–204.

Leardini R, McNab H, Nanni D. Peroxydicarbonate-mediated oxidation of N-(ortho-aryloxyphenyl) and N-(ortho-arylaminophenyl)aldimines. Tetrahedron. 1995;51(44):12143–12158.

Furlani C. Ricerche polarografiche su sostanze eterocicliche. 2. Gazzetta Chimica Italiana. 1955;85:1646–1667.

Pflegel P, Wagner G. Polarography of 3-alkylquinoxalones. 7. Polarography of heterocyclic compounds. Pharmazie. 1969;24(6):308–314. PubMed

Perin DD. Dissociation Constants of Organic Bases. London, UK: Butterworths; 1965.

Fryšová I, Slouka J, Gucký T. Chemistry of 1,2-dihydro-quinoxaline-2-ones. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Physica, Chemica. 2003;42:71–100.

Ribeiro da Suva MAV, Matos MAR, Rio CMA, Miranda MS, Morais VMF. Thermochemical and theoretical studies of 2-hydroxyquinoxaline, 2,3-dihydroxyquinoxaline, and 2-hydroxy-3-methylquinoxaline. Journal of Physical Chemistry A. 2000;104(28):6644–6648.

Janik B, Elving PJ. Electrochemical reduction of 6-substituted purines correlation with structural and energetic characteristics. Journal of The Electrochemical Society. 1969;116:1087–1097.

Gosser DK. Cyclic Voltammetry. New York, NY, USA: VCH Publishers; 1993.

Kotouček M, Rotreklová R. Polarographisches Verhalten einiger Isorosindonderivate. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Physica, Chemica. 1973;40:75–86.

Nakaya J, Kinoshita H. Controlled-potential electrolysis of polarographically observed phenazine and its mono N-oxide. Bulletin of University of Osaka Prefecture A. 1965;14:83–91.

Heyrovský J, Kůta J. Základy Polarografie. Praha, Czech Republic: ČSAV; 1962.

Stránský Z, Slouková I. Contribution to polarography of semiquinone forming systems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Physica, Chemica. 1965;18:257–262.

Dračka O. Theory of current elimination in linear scan voltammetry. Journal of Electroanalytical Chemistry. 1996;402(1-2):19–28.

Trnková L. Electrochemical elimination methods. Chemicke Listy. 2001;95(9):518–527.

Trnková L, Jelen F, Postbieglová I. Application of elimination voltammetry to the resolution of adenine and cytosine signals in oligonucleotides. I. Homo-oligodeoxynucleotides dA. Electroanalysis. 2003;15(19):1529–1535.

Trnková L. Identification of current nature by elimination voltammetry with linear scan. Journal of Electroanalytical Chemistry. 2005;582(1-2):258–266.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...