Electrochemical behavior of quinoxalin-2-one derivatives at mercury electrodes and its analytical use
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22666117
PubMed Central
PMC3361246
DOI
10.1100/2012/409378
Knihovny.cz E-zdroje
- MeSH
- chinoxaliny chemie MeSH
- elektrochemické techniky MeSH
- elektrody * MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- rtuť chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chinoxaliny MeSH
- rtuť MeSH
Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in the position 4 precedes the electron acceptance forming a semiquinone radical intermediate which is relatively stable in acidic solutions. Its further reduction is manifested by separated current signal. A positive mesomeric effect of the nonprotonized amino group in the position 7 of the derivative III accelerates the semiquinone reduction yielding a single current wave. The suggested reaction mechanism was verified by means of direct current polarography, differential pulse, cyclic and elimination voltammetry, and coulometry with subsequent GC/MS analysis. The understanding of the mechanism was applied in developing of analytical method for the determination of the studied compounds.
Zobrazit více v PubMed
Leng F, Chaires JB, Waring MJ. Energetics of echinomycin binding to DNA. Nucleic Acids Research. 2003;31(21):6191–6197. PubMed PMC
May LG, Madine MA, Waring MJ. Echinomycin inhibits chromosomal DNA replication and embryonic development in vertebrates. Nucleic Acids Research. 2004;32(1):65–72. PubMed PMC
El Ashry ESH, Abdel-Rahman AAH, Rashed N, Rasheed HA. Homoacyclovir analogues of unnatural bases and their activity against hepatitis B virus. Pharmazie. 1999;54(12):893–897. PubMed
Kuroya M, Yoshida T, Shiratori O, et al. Studies on quinoxaline antibiotics. 1. General properties and the producing strains. The Journal of Antibiotics. 1961;14:324–329.
Shoji JI, Katagiri K. Studies on quinoxaline antibiotics. II. New antibiotics, triostins A, B and C. The Journal of Antibiotics. 1961;14:335–339. PubMed
Corbaz R, Ettlinger L, Gaumann E, et al. Stoffwechselprodukte Von Actinomyceten. 7. Echinomycin. Helvetica Chimica Acta. 1957;40:199–204.
Leardini R, McNab H, Nanni D. Peroxydicarbonate-mediated oxidation of N-(ortho-aryloxyphenyl) and N-(ortho-arylaminophenyl)aldimines. Tetrahedron. 1995;51(44):12143–12158.
Furlani C. Ricerche polarografiche su sostanze eterocicliche. 2. Gazzetta Chimica Italiana. 1955;85:1646–1667.
Pflegel P, Wagner G. Polarography of 3-alkylquinoxalones. 7. Polarography of heterocyclic compounds. Pharmazie. 1969;24(6):308–314. PubMed
Perin DD. Dissociation Constants of Organic Bases. London, UK: Butterworths; 1965.
Fryšová I, Slouka J, Gucký T. Chemistry of 1,2-dihydro-quinoxaline-2-ones. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Physica, Chemica. 2003;42:71–100.
Ribeiro da Suva MAV, Matos MAR, Rio CMA, Miranda MS, Morais VMF. Thermochemical and theoretical studies of 2-hydroxyquinoxaline, 2,3-dihydroxyquinoxaline, and 2-hydroxy-3-methylquinoxaline. Journal of Physical Chemistry A. 2000;104(28):6644–6648.
Janik B, Elving PJ. Electrochemical reduction of 6-substituted purines correlation with structural and energetic characteristics. Journal of The Electrochemical Society. 1969;116:1087–1097.
Gosser DK. Cyclic Voltammetry. New York, NY, USA: VCH Publishers; 1993.
Kotouček M, Rotreklová R. Polarographisches Verhalten einiger Isorosindonderivate. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Physica, Chemica. 1973;40:75–86.
Nakaya J, Kinoshita H. Controlled-potential electrolysis of polarographically observed phenazine and its mono N-oxide. Bulletin of University of Osaka Prefecture A. 1965;14:83–91.
Heyrovský J, Kůta J. Základy Polarografie. Praha, Czech Republic: ČSAV; 1962.
Stránský Z, Slouková I. Contribution to polarography of semiquinone forming systems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Physica, Chemica. 1965;18:257–262.
Dračka O. Theory of current elimination in linear scan voltammetry. Journal of Electroanalytical Chemistry. 1996;402(1-2):19–28.
Trnková L. Electrochemical elimination methods. Chemicke Listy. 2001;95(9):518–527.
Trnková L, Jelen F, Postbieglová I. Application of elimination voltammetry to the resolution of adenine and cytosine signals in oligonucleotides. I. Homo-oligodeoxynucleotides dA. Electroanalysis. 2003;15(19):1529–1535.
Trnková L. Identification of current nature by elimination voltammetry with linear scan. Journal of Electroanalytical Chemistry. 2005;582(1-2):258–266.