Virtual interactomics of proteins from biochemical standpoint
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
22928109
PubMed Central
PMC3423939
DOI
10.1155/2012/976385
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations.
Zobrazit více v PubMed
Espejo A, Côté J, Bednarek A, Richard S, Bedford MT. A protein-domain microarray identifies novel protein-protein interactions. Biochemical Journal. 2002;367(3):697–702. PubMed PMC
Lo SH. Reverse interactomics: from peptides to proteins and to functions. ACS Chemical Biology. 2007;2(2):93–95. PubMed
Suter B, Kittanakom S, Stagljar I. Two-hybrid technologies in proteomics research. Current Opinion in Biotechnology. 2008;19(4):316–323. PubMed
Briant DJ, Murphy JM, Leung GC, Sicheri F. Rapid identification of linear protein domain binding motifs using peptide SPOT arrays. Methods in Molecular Biology. 2009;570:175–185. PubMed
Hui S, Bader GD. Proteome scanning to predict PDZ domain interactions using support vector machines. BMC Bioinformatics. 2010;11, article 507 PubMed PMC
Daemen A, Signoretto M, Gevaert O, Suykens JAK, De Moor B. Improved microarray-based decision support with graph encoded interactome data. PLoS ONE. 2010;5(4)e10225 PubMed PMC
Huang J, Ru B, Dai P. Bioinformatics resources and tools for phage display. Molecules. 2011;16(1):694–709. PubMed PMC
van Dijk ADJ, Kaptein R, Boelens R, Bonvin AMJJ. Combining NMR relaxation with chemical shift perturbation data to drive protein-protein docking. Journal of Biomolecular NMR. 2006;34(4):237–244. PubMed
Klinge S, Ñez-Ramírez R, Llorca O, Pellegrini L. 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases. The EMBO Journal. 2009;28(13):1978–1987. PubMed PMC
Stark JL, Powers R. Application of NMR and molecular docking in structure-based drug discovery. Topics in Current Chemistry. 2012;326:1–34. PubMed PMC
Orts J, Bartoschek S, Griesinger C, Monecke P, Carlomagno T. An NMR-based scoring function improves the accuracy of binding pose predictions by docking by two orders of magnitude. Journal of Biomolecular NMR. 2012;52(1):23–30. PubMed PMC
Diller DJ, Li R. Kinases, homology models, and high throughput docking. Journal of Medicinal Chemistry. 2003;46(22):4638–4647. PubMed
Förster F, Villa E. Integration of cryo-EM with atomic and protein-protein interaction data. Methods in Enzymology. 2010;483:47–72. PubMed
Cavasotto CN. Homology models in docking and high-throughput docking. Current Topics in Medicinal Chemistry. 2011;11(12):1528–1534. PubMed
Tsfadia Y, Friedman R, Kadmon J, Selzer A, Nachliel E, Gutman M. Molecular dynamics simulations of palmitate entry into the hydrophobic pocket of the fatty acid binding protein. FEBS Letters. 2007;581(6):1243–1247. PubMed
Gochin M, Zhou G, Phillips AH. Paramagnetic relaxation assisted docking of a small indole compound in the HIV-1 gp41 hydrophobic pocket. ACS Chemical Biology. 2011;6(3):267–274. PubMed PMC
Blankenburg H, Ramírez F, Büch J, Albrecht M. DASMIweb: online integration, analysis and assessment of distributed protein interaction data. Nucleic Acids Research. 2009;37(2):W122–W128. PubMed PMC
Cowley MJ, Pinese M, Kassahn KS, et al. PINA v2.0: mining interactome modules. Nucleic Acids Research. 2011;40:D862–D865. PubMed PMC
Sickmeier M, Hamilton JA, LeGall T, et al. DisProt: the database of disordered proteins. Nucleic Acids Research. 2007;35(1):D786–D793. PubMed PMC
Meszaros B, Simon I, Dosztanyi, Z, et al. Prediction of protein binding regions in disordered proteins. PLoS Computational Biology. 2009;5(5)e1000376 PubMed PMC
Mészáros B, Simon I, Dosztányi Z. The expanding view of protein-protein interactions: complexes involving intrinsically disordered proteins. Physical Biology. 2011;8(3)035003 PubMed
Biagini A, Puigserver A. Sequence analysis of the aminoacylase-1 family. A new proposed signature for metalloexopeptidases. Comparative Biochemistry and Physiology B. 2001;128(3):469–481. PubMed
Kubrycht J, Sigler K, Růžička M, Souček P, Borecký J, Ježek P. Ancient phylogenetic beginnings of immunoglobulin hypermutation. Journal of Molecular Evolution. 2006;63(5):691–706. PubMed
Przybylski D, Rost B. Consensus sequences improve PSI-BLAST through mimicking profile-profile alignments. Nucleic Acids Research. 2007;35(7):2238–2246. PubMed PMC
Przybylski D, Rost B. Powerful fusion: PSI-BLAST and consensus sequences. Bioinformatics. 2008;24(18):1987–1993. PubMed PMC
Wrzeszczynski KO, Rost B. Cell cycle kinases predicted from conserved biophysical properties. Proteins. 2009;74(3):655–668. PubMed PMC
Beck K, Hunter I, Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. The FASEB Journal. 1990;4(2):148–160. PubMed
Dong X-N, Xiao Y, Dierich MP, Chen YH. N- and C-domains of HIV-1 gp41: mutation, structure and functions. Immunology Letters. 2001;75(3):215–220. PubMed
Sibbald PR, Sommerfeldt H, Argos P. Automated protein sequence pattern handling and PROSITE searching. Computer Applications in the Biosciences. 1991;7(4):535–536. PubMed
Gattiker A, Gasteiger E, Bairoch A. ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinformatics. 2002;1(2):107–108. PubMed
Sigrist CJA, De Castro E, Langendijk-Genevaux PS, Le Saux V, Bairoch A, Hulo N. ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics. 2005;21(21):4060–4066. PubMed
Sigrist CJA, Cerutti L, De Castro E, et al. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Research. 2009;38(1):D161–D166.gkp885 PubMed PMC
Dunbrack RL., Jr. Comparative modeling of CASP3 targets using PSI-BLAST and SCWRL. Proteins. 1999;(supplement 3):81–87. PubMed
Elofsson A. A study on protein sequence alignment quality. Proteins. 2002;46(3):330–339. PubMed
Zhou H, Zhou Y. Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins. 2004;55(4):1005–1013. PubMed
Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A. FFAS03: a server for profile-profile sequence alignments. Nucleic Acids Research. 2005;33(2):W284–W288. PubMed PMC
Jaroszewski L, Li Z, Cai XH, Weber C, Godzik A. FFAS server: novel features and applications. Nucleic Acids Research. 2011;39(2):W38–W44. PubMed PMC
Dong E, Smith J, Heinze S, Alexander N, Meiler J. BCL::Align-Sequence alignment and fold recognition with a custom scoring function online. Gene. 2008;422(1-2):41–46. PubMed PMC
Fallen K, Banerjee S, Sheehan J, et al. The Kir channel immunoglobulin domain is essential for Kir1.1 (ROMK) thermodynamic stability, trafficking and gating. Channels. 2009;3(1):57–68. PubMed PMC
Vishnepolsky B, Pirtskhalava M. CONTSOR—a new knowledge-based fold recognition potential, based on side chain orientation and contacts between residue terminal groups. Protein Science. 2012;21(1):134–141. PubMed PMC
Yang J-M, Tung CH. Protein structure database search and evolutionary classification. Nucleic Acids Research. 2006;34(13):3646–3659. PubMed PMC
Mavridis L, Ghoorah AW, Venkatraman V, Ritchie DW. Representing and comparing protein folds and fold families using three-dimensional shape-density representations. Proteins. 2012;80(2):530–545. PubMed
Di Lena P, Fariselli P, Margara L, Vassura M, Casadio R. Fast overlapping of protein contact maps by alignment of eigenvectors. Bioinformatics. 2010;26(18):2250–2258. PubMed
Rodionov MA, Johnson MS. Residue-residue contact substitution probabilities derived from aligned three-dimensional structures and the identification of common folds. Protein Science. 1994;3(12):2366–2377. PubMed PMC
Godzik A, Skolnick J, Kolinski A. Regularities interaction patterns of globular proteins. Protein Engineering. 1993;6(8):801–810. PubMed
Vehlow C, Stehr H, Winkelmann M, et al. CMView: interactive contact map visualization and analysis. Bioinformatics. 2011;27(11):1573–1574.btr163 PubMed
Barker JA, Thornton JM. An algorithm for constraint-based structural template matching: application to 3D templates with statistical analysis. Bioinformatics. 2003;19(13):1644–1649. PubMed
Ward RM, Venner E, Daines B, et al. Evolutionary trace annotation server: automated enzyme function prediction in protein structures using 3D templates. Bioinformatics. 2009;25(11):1426–1427. PubMed PMC
Nebel JC. Generation of 3D templates of active sites of proteins with rigid prosthetic groups. Bioinformatics. 2006;22(10):1183–1189. PubMed
Kuksa PP, Pavlovic V. Efficient motif finding algorithms for large-alphabet inputs. BMC Bioinformatics. 2010;11(supplement 8, article S1) PubMed PMC
Dror O, Benyamini H, Nussinov R, Wolfson H. MASS: multiple structural alignment by secondary structures. Bioinformatics. 2003;19(1):i95–i104. PubMed
Dror O, Benyamini H, Nussinov R, Wolfson HJ. Multiple structural alignment by secondary structures: algorithm and applications. Protein Science. 2003;12(11):2492–2507. PubMed PMC
Williams A, Gilbert DR, Westhead DR. Multiple structural alignment for distantly related all β structures using TOPS pattern discovery and simulated annealing. Protein Engineering. 2003;16(12):913–923. PubMed
Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM. MUSTANG: a multiple structural alignment algorithm. Proteins. 2006;64(3):559–574. PubMed
Micheletti C, Orland H. MISTRAL: a tool for energy-based multiple structural alignment of proteins. Bioinformatics. 2009;25(20):2663–2669. PubMed
Konagurthu AS, Reboul CF, Schmidberger JW, et al. MUSTANG-MR structural sieving server: applications in protein structural analysis and crystallography. PLoS ONE. 2010;5(4)e10048 PubMed PMC
Siu WY, Mamoulis N, Yiu SM, Chan HL. A data-mining approach for multiple structural alignment of proteins. Bioinformation. 2010;4(8):366–370. PubMed PMC
Sun H, Sacan A, Ferhatosmanoglu H, Wang Y. Smolign: a spatial motifs based protein multiple structural alignment method. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2012;9(1):14 pages. PubMed
Miller ML, Jensen LJ, Diella F, et al. Linear motif atlas for phosphorylation-dependent signaling. Science Signaling. 2008;1(35):p. ra2. PubMed PMC
Schwartz D, Church GM. Collection and motif-based prediction of phosphorylation sites in human viruses. Science Signaling. 2010;3(137):p. rs2. PubMed
Standley DM, Yamashita R, Kinjo AR, Toh H, Nakamura H. SeSAW: balancing sequence and structural information in protein functional mapping. Bioinformatics. 2010;26(9):1258–1259. PubMed PMC
Wong YH, Lee TY, Liang HK, et al. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic acids research. 2007;35:W588–W594. PubMed PMC
Durek P, Schudoma C, Weckwerth W, Selbig J, Walther D. Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins. BMC Bioinformatics. 2009;10, article 117 PubMed PMC
Encinar JA, Fernandez-Ballester G, Sánchez IE, et al. ADAN: a database for prediction of protein-protein interaction of modular domains mediated by linear motifs. Bioinformatics. 2009;25(18):2418–2424. PubMed
Marchler-Bauer A, Panchenko AR, Shoemarker BA, Thiessen PA, Geer LY, Bryant SH. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Research. 2002;30(1):281–283. PubMed PMC
Marchler-Bauer A, Anderson JB, Chitsaz F, et al. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Research. 2009;37(1):D205–D210. PubMed PMC
Marchler-Bauer A, Lu S, Anderson JB, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research. 2011;39(1):D225–D229. PubMed PMC
Kundrotas PJ, Zhu Z, Vakser IA. GWIDD: genome-wide protein docking database. Nucleic Acids Research. 2009;38(1):D513–D517. PubMed PMC
Pugalenthi G, Suganthan PN, Sowdhamini R, Chakrabarti S. MegaMotifBase: a database of structural motifs in protein families and superfamilies. Nucleic Acids Research. 2008;36(1):D218–D221. PubMed PMC
May P, Kreuchwig A, Steinke T, Koch I. PTGL: a database for secondary structure-based protein topologies. Nucleic Acids Research. 2010;38(1):D326–D330. PubMed PMC
Shulman-Peleg A, Nussinov R, Wolfson HJ. RsiteDB: a database of protein binding pockets that interact with RNA nucleotide bases. Nucleic Acids Research. 2009;37(1):D369–D373. PubMed PMC
Geysen HM, Rodda SJ, Mason TJ. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Molecular Immunology. 1986;23(7):709–715. PubMed
Penninger JM, Bachmaier K. Review of microbial infections and the immune response to cardiac antigens. Journal of Infectious Diseases. 2000;181(6):S498–S504. PubMed
Fernandez-Fuentes N, Oliva B, Fiser A. A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucleic Acids Research. 2006;34(7):2085–2097. PubMed PMC
Libbey JE, McCoy LL, Fujinami RS. Molecular mimicry in multiple sclerosis. International Review of Neurobiology. 2007;79:127–147. PubMed PMC
Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228(4705):1315–1317. PubMed
Devlin JJ, Panganiban LC, Devlin PE. Random peptide libraries: a source of specific protein binding molecules. Science. 1990;249(4967):404–406. PubMed
Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science. 1990;249(4967):386–390. PubMed
Jellis CL, Cradick TJ, Rennert P, et al. Defining critical residues in the epitope for a HIV-neutralizing monoclonal antibody using phage display and peptide array technologies. Gene. 1993;137(1):63–68. PubMed
Matthews DJ, Wells JA. Substrate phage: selection of protease substrates by monovalent phage display. Science. 1993;260(5111):1113–1117. PubMed
Koivunen E, Wang B, Ruoslahti E. Isolation of a highly specific ligand for the α5β1 integrin from a phage display library. Journal of Cell Biology. 1994;124(3):373–380. PubMed PMC
Pasqualini R, Koivunen E, Ruoslahti E. A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. Journal of Cell Biology. 1995;130(5):1189–1196. PubMed PMC
Schmitz R, Baumann G, Gram H. Catalytic specificity of phosphotyrosine kinases Blk, Lyn, c-Src and Syk as assessed by phage display. Journal of Molecular Biology. 1996;260(5):664–677. PubMed
Fack F, Hügle-Dörr B, Song D, Queitsch I, Petersen G, Bautz EKF. Epitope mapping by phage display: random versus gene-fragment libraries. Journal of Immunological Methods. 1997;206(1-2):43–52. PubMed
Blüthner M, Schäfer C, Schneider C, Bautz FA. Identification of major linear epitopes on the sp100 nuclear PBC autoantigen by the gene-fragment phage-display technology. Autoimmunity. 1999;29(1):33–42. PubMed
Ladner RC, Sato AK, Gorzelany J, de Souza M. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discovery Today. 2004;9(12):525–529. PubMed
Brissette R, Prendergast JKA, Goldstein NI. Identification of cancer targets and therapeutics using phage display. Current Opinion in Drug Discovery and Development. 2006;9(3):363–369. PubMed
Hohm T, Limbourg P, Hoffmann D. A multiobjective evolutionary method for the design of peptidic mimotopes. Journal of Computational Biology. 2006;13(1):113–125. PubMed
Castel G, Chtéoui M, Heyd B, Tordo N. Phage display of combinatorial peptide libraries: application to antiviral research. Molecules. 2011;16(5):3499–3518. PubMed PMC
Sherev T, Wiesmüller KH, Walden P. Mimotopes of tumor-associated T-cell epitopes for cancer vaccines determined with combinatorial peptide libraries. Applied Biochemistry and Biotechnology B. 2003;25(1):53–61. PubMed
Zhong YW, Xu DP, Li XD, Dai JZ, Xu B, Li L. Epitope screening of influenza A (H3N2) by using phage display library. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2009;23(4):272–274. PubMed
Sun E-C, Zhao J, Yang T, et al. Identification of a conserved JEV serocomplex B-cell epitope by screening a phage-display peptide library with a mAb generated against West Nile virus capsid protein. Virology Journal. 2011;8(100):1–10. PubMed PMC
Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nature Materials. 2008;7(3):248–254. PubMed
Giordano RJ, Edwards JK, Tuder RM, Arap W, Pasqualini R. Combinatorial ligand-directed lung targeting. Proceedings of the American Thoracic Society. 2009;6(5):411–415. PubMed PMC
Passarella RJ, Spratt DE, van der Ende AE, et al. Targeted nanoparticles that deliver a sustained, specific release of paclitaxel to irradiated tumors. Cancer Research. 2010;70(11):4550–4559. PubMed PMC
Lee GY, Kim JH, Oh GT, Lee BH, Kwon IC, Kim IS. Molecular targeting of atherosclerotic plaques by a stabilin-2-specific peptide ligand. Journal of Controlled Release. 2011;155(2):211–217. PubMed
Li J, Feng L, Fan L, et al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials. 2011;32(21):4943–4950. PubMed PMC
Valuev VP, Afonnikov DA, Ponomarenko MP, Milanesi L, Kolchanov NA. ASPD (Artificially Selected Proteins/Peptides Database): a database of proteins and peptides evolved in vitro. Nucleic Acids Research. 2002;30(1):200–202. PubMed PMC
Mandava S, Makowski L, Devarapalli S, Uzubell J, Rodi DJ. RELIC—a bioinformatics server for combinatorial peptide analysis and identification of protein-ligand interaction sites. Proteomics. 2004;4(5):1439–1460. PubMed
Casey JL, Coley AM, Foley M. Phage display of peptides in ligand selection for use in affinity chromatography. Methods in Molecular Biology. 2007;421:111–124. PubMed
Mumey BM, Bailey BW, Kirkpatrick B, Jesaitis AJ, Angel T, Dratz EA. A new method for mapping discontinuous antibody epitopes to reveal structural features of proteins. Journal of Computational Biology. 2003;10(3-4):555–567. PubMed
Mumey B, Ohler N, Angel T, Jesaitis A, Dratz E. Filtering epitope alignments to improve protein surface prediction. Frontiers of High Performance Computing and Networking. 2006;4331:648–657.
Moreau V, Granier C, Villard S, Laune D, Molina F. Discontinuous epitope prediction based on mimotope analysis. Bioinformatics. 2006;22(9):1088–1095. PubMed
Ru B, Huang J, Dai P, et al. MimoDB: a new repository for mimotope data derived from phage display technology. Molecules. 2010;15(11):8279–8288. PubMed PMC
Huang J, Ru B, Zhu P, et al. MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Research. 2012;40:D271–D277. PubMed PMC
Mayrose I, Shlomi T, Rubinstein ND, et al. Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Research. 2007;35(1):69–78. PubMed PMC
Huang YX, Bao YL, Guo SY, Wang Y, Zhou CG, Li YX. Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis. BMC Bioinformatics. 2008;9, article 538 PubMed PMC
Chen WH, Sun PP, Lu Y, Guo WW, Huang YX, Ma ZQ. MimoPro: a more efficient Web-based tool for epitope prediction using phage display libraries. BMC Bioinformatics. 2011;12, article 199 PubMed PMC
Denisova GF, Denisov DA, Bramson JL. Applying bioinformatics for antibody epitope prediction using affinity-selected mimotopes—relevance for vaccine design. Immunome Research. 2010;6(supplement 2, article S6) PubMed PMC
Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs. 2010;24(1):1–8. PubMed
Sun P, Chen W, Huang Y, Wang H, Ma Z, Lv Y. Epitope prediction based on random peptide library screening: benchmark dataset and prediction tools evaluation. Molecules. 2011;16(6):4971–4993. PubMed PMC
Kulkarni-Kale U, Bhosle S, Kolaskar AS. CEP: a conformational epitope prediction server. Nucleic Acids Research. 2005;33(2):W168–W171. PubMed PMC
Moreau V, Fleury C, Piquer D, et al. PEPOP: computational design of immunogenic peptides. BMC Bioinformatics. 2008;9, article 71 PubMed PMC
Ponomarenko J, Bui H-H, Li W, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9, article 514 PubMed PMC
Rubinstein ND, Mayrose I, Martz E, Pupko T. Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics. 2009;10, article 287 PubMed PMC
Van de Water J, Gershwin ME, Leung P, Ansari A, Coppel RL. The autoepitope of the 74-kD mitochondrial autoantigen of primary biliary cirrhosis corresponds to the functional site of dihydrolipoamide acetyltransferase. Journal of Experimental Medicine. 1988;167(6):1791–1799. PubMed PMC
El-Kased RF, Koy C, Deierling T, et al. Mass spectrometric and peptide chip epitope mapping of rheumatoid arthritis autoantigen RA33. European Journal of Mass Spectrometry. 2009;15(6):747–759. PubMed
Burkart V, Siegenthaler RK, Blasius E, et al. High affinity binding of hydrophobic and autoantigenic regions of proinsulin to the 70 kDa chaperone DnaK. BMC Biochemistry. 2010;11(1, article 44) PubMed PMC
Liang S, Zheng D, Standley DM, Yao B, Zacharias M, Zhang C. EPSVR and EPMeta: prediction of antigenic epitopes using support vector regression and multiple server results. BMC Bioinformatics. 2010;11, article 381 PubMed PMC
Wee LJK, Simarmata D, Kam YW, Ng LFP, Tong JC. SVM-based prediction of linear B-cell epitopes using Bayes Feature Extraction. BMC Genomics. 2010;11(supplement 4, article S21) PubMed PMC
Su C-H, Pal NR, Lin K-L, Chung I-F. Identification of amino acid propensities that are strong determinants of linear B-cell epitope using neural networks. PLoS ONE. 2012;7(2)e30617 PubMed PMC
Ansari HR, Raghava GP. Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Research. 2010;6(1, article 6) PubMed PMC
Sweredoski MJ, Baldi P. COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Engineering, Design and Selection. 2009;22(3):113–120. PubMed PMC
Wang Y, Wu W, Negre NN, White KP, Li C, Shah PK. Determinants of antigenicity and specificity in immune response for protein sequences. BMC Bioinformatics. 2011;12, article 251 PubMed PMC
Larsen MV, Lundegaard C, Lamberth K, et al. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. European Journal of Immunology. 2005;35(8):2295–2303. PubMed
Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics. 2007;8, article 424 PubMed PMC
Doytchinova IA, Guan P, Flower DR. EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics. 2006;7, article 131 PubMed PMC
Feldhahn M, Dönnes P, Thiel P, Kohlbacher O. FRED—a framework for T-cell epitope detection. Bioinformatics. 2009;25(20):2758–2759. PubMed PMC
Hattotuwagama CK, Toseland CP, Guan P, et al. Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique. Journal of Chemical Information and Modeling. 2006;46(3):1491–1502. PubMed
Lundegaard C, Lund O, Nielsen M. Prediction of epitopes using neural network based methods. Journal of Immunological Methods. 2011;374(1-2):26–34. PubMed PMC
Tung C-W, Ziehm M, Kämper A, Kohlbacher O, Ho S-Y. POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinformatics. 2011;12, article 446 PubMed PMC
Kim Y, Sette A, Peters B. Applications for T-cell epitope queries and tools in the Immune Epitope Database and Analysis Resource. Journal of Immunological Methods. 2011;374(1-2):62–69. PubMed PMC
Ponomarenko J, Papangelopoulos N, Zajonc DM, Peters B, Sette A, Bourne PE. IEDB-3D: structural data within the immune epitope database. Nucleic Acids Research. 2011;39(1):D1164–D1170. PubMed PMC
Modrow S, Hahn BH, Shaw GM. Computer-assisted analysis of envelope protein sequences of seven human immunodeficiency virus isolates: prediction of antigenic epitopes in conserved and variable regions. Journal of Virology. 1987;61(2):570–578. PubMed PMC
Schafer JRA, Jesdale BM, George JA, Kouttab NM, De Groot AS. Prediction of well-conserved HIV-1 ligands using a matrix-based algorithm, EpiMatrix. Vaccine. 1998;16(19):1880–1884. PubMed
Sung MH, Simon R. Genomewide conserved epitope profiles of HIV-1 predicted by biophysical properties of MHC binding peptides. Journal of Computational Biology. 2004;11(1):125–145. PubMed
Xiao Y, Segal MR. Prediction of genomewide conserved epitope profiles of HIV-1: classifier choice and peptide representation. Statistical Applications in Genetics and Molecular Biology. 2005;4(1, article 25) PubMed
Lacerda M, Scheffler K, Seoighe C. Epitope discovery with phylogenetic hidden markov models. Molecular Biology and Evolution. 2010;27(5):1212–1220. PubMed PMC
Rusert P, Krarup A, Magnus C, et al. Interaction of the gp120 V1V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies. Journal of Experimental Medicine. 2011;208(7):1419–1433. PubMed PMC
Pickett BE, Sadat EL, Zhang Y, et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Research. 2012;40:D593–D598. PubMed PMC
Hu X, Zhou W, Udaka K, Mamitsuka H, Zhu S. MetaMHC: a meta approach to predict peptides binding to MHC molecules. Nucleic Acids Research. 2010;38(2):W474–W479. PubMed PMC
Toussaint NC, Kohlbacher O. OptiTope—a web server for the selection of an optimal set of peptides for epitope-based vaccines. Nucleic Acids Research. 2009;37(2):W617–W622. PubMed PMC
Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA. PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Research. 2008;36:W35–W41. PubMed PMC
Reche PA, Reinherz EL. PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands. Nucleic Acids Research. 2005;33(2):W138–W142. PubMed PMC
Reche PA, Glutting JP, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs. Human Immunology. 2002;63(9):701–709. PubMed
Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics. 2004;56(6):405–419. PubMed
Lengauer T, Rarey M. Computational methods for biomolecular docking. Current Opinion in Structural Biology. 1996;6(3):402–406. PubMed
Hansch C. Dihydrofolate reductase inhibition. A study in the use of X-ray crystallography, molecular graphics, and quantitative structure-activity relations in drug design. Drug Intelligence and Clinical Pharmacy. 1982;16(5):391–395. PubMed
Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology. 1982;161(2):269–288. PubMed
Horjales E, Branden CI. Docking of cyclohexanol-derivatives into the active site of liver alcohol dehydrogenase. Using computer graphics and energy minimization. Journal of Biological Chemistry. 1985;260(29):15445–15451. PubMed
DesJarlais RL, Sheridan RP, Dixon JS, Kuntz ID, Venkataraghavan R. Docking flexible ligands to macromolecular receptors by molecular shape. Journal of Medicinal Chemistry. 1986;29(11):2149–2153. PubMed
Stamato FMLG, Longo E, Ferreira R, Tapia O. The catalytic mechanism of serine proteases. III. An Indo-ISCRF study of the methylacetate docking in α-chymotrypsin. Journal of Theoretical Biology. 1986;118(1):45–59. PubMed
Jorgensen WL. Rusting of the lock and key model for protein-ligand binding. Science. 1991;254(5034):954–955. PubMed
Chaudhury S, Gray JJ. Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. Journal of Molecular Biology. 2008;381(4):1068–1087. PubMed PMC
Olson AJ, Goodsell DS. Automated docking and the search for HIV protease inhibitors. SAR and QSAR in environmental research. 1998;8(3-4):273–285. PubMed
Muegge I, Martin YC, Hajduk PJ, Fesik SW. Evaluation of PMF scoring in docking weak ligands to the FK506 binding protein. Journal of Medicinal Chemistry. 1999;42(14):2498–2503. PubMed
Lise S, Walker-Taylor A, Jones DT. Docking protein domains in contact space. BMC Bioinformatics. 2006;7, article 310 PubMed PMC
Novikov FN, Stroylov VS, Stroganov OV, Kulkov V, Chilov GG. Developing novel approaches to improve binding energy estimation and virtual screening: a PARP case study. Journal of Molecular Modeling. 2009;15(11):1337–1347. PubMed
Pierce BG, Hourai Y, Weng Z. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS ONE. 2011;6(9)e24657 PubMed PMC
Cho H, Yun CW, Park WK, et al. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacological Research. 2004;49(1):37–43. PubMed
Bai S, Du T, Khosravi E. Applying internal coordinate mechanics to model the interactions between 8R-lipoxygenase and its substrate. BMC Bioinformatics. 2010;11(supplement 6, article S2) PubMed PMC
Pedretti A, Villa L, Vistoli G. Modeling of binding modes and inhibition mechanism of some natural ligands of farnesyl transferase using molecular docking. Journal of Medicinal Chemistry. 2002;45(7):1460–1465. PubMed
Koehler NKU, Yang CY, Varady J, et al. Structure-based discovery of nonpeptidic small organic compounds to block the T cell response to myelin basic protein. Journal of Medicinal Chemistry. 2004;47(21):4989–4997. PubMed
Michels AW, Ostrov DA, Zhang L, et al. Structure-based selection of small molecules to alter allele-specific MHC class II antigen presentation. Journal of Immunology. 2011;187(11):5921–5930. PubMed PMC
Zaheer-Ul-Haq, Khan W. Molecular and structural determinants of adamantyl susceptibility to HLA-DRs allelic variants: an in silico approach to understand the mechanism of MLEs. Journal of Computer-Aided Molecular Design. 2011;25(1):81–101. PubMed
Bhinge A, Chakrabarti P, Uthanumallian K, Bajaj K, Chakraborty K, Varadarajan R. Accurate detection of protein:ligand binding sites using molecular dynamics simulations. Structure. 2004;12(11):1989–1999. PubMed
Tang XN, Lo CW, Chuang YC, et al. Prediction of the binding mode between GSK3β and a peptide derived from GSKIP using molecular dynamics simulation. Biopolymers. 2011;95(7):461–471. PubMed
Li X, Keskin O, Ma B, Nussinov R, Liang J. Protein-protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking. Journal of Molecular Biology. 2004;344(3):781–795. PubMed
Huang B, Schroeder M. Using protein binding site prediction to improve protein docking. Gene. 2008;422(1-2):14–21. PubMed
Hetényi C, van der Spoel D. Toward prediction of functional protein pockets using blind docking and pocket search algorithms. Protein Science. 2011;20(5):880–893. PubMed PMC
Eyrisch S, Helms V. Transient pockets on protein surfaces involved in protein-protein interaction. Journal of Medicinal Chemistry. 2007;50(15):3457–3464. PubMed
Duan Y, Reddy BVB, Kaznessis YN. Residue conservation information for generating near-native structures in protein-protein docking. Journal of Bioinformatics and Computational Biology. 2006;4(4):793–806. PubMed
Cockell SJ, Oliva B, Jackson RM. Structure-based evaluation of in silico predictions of protein-protein interactions using comparative docking. Bioinformatics. 2007;23(5):573–581. PubMed
Pierri CL, Parisi G, Porcelli V. Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening. Biochimica et Biophysica Acta. 2010;1804(9):1695–1712. PubMed
Heberlé G, de Azevedo WF. Bio-inspired algorithms applied to molecular docking simulations. Current Medicinal Chemistry. 2011;18(9):1339–1352. PubMed
Palma PN, Krippahl L, Wampler JE, Moura JJG. Bigger: a new (soft) docking algorithm for predicting protein interactions. Proteins. 2000;39(4):372–384. PubMed
Giordanetto F, Cotesta S, Catana C, et al. Novel scoring functions comprising QXP, SASA, and protein side-chain entropy terms. Journal of Chemical Information and Computer Sciences. 2004;44(3):882–893. PubMed
van Dijk ADJ, De Vries SJ, Dominguez C, Chen H, Zhou H-X, Bonvin AMJJ. Data-driven docking: HADDOCK’S adventures in CAPRI. Proteins. 2005;60(2):232–238. PubMed
Betzi S, Suhre K, Chétrit B, Guerlesquin F, Morelli X. GFscore: a general nonlinear consensus scoring function for high-throughput docking. Journal of Chemical Information and Modeling. 2006;46(4):1704–1712. PubMed
Durrant JD, McCammon JA. NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes. Journal of Chemical Information and Modeling. 2010;50(10):1865–1871. PubMed PMC
Durrant JD, McCammon JA. NNScore 2.0: a neural-network receptor-ligand scoring function. Journal of Chemical Information and Modeling. 2011;51(11):2897–2903. PubMed PMC
Ahmad S, Mizuguchi K. Partner-aware prediction of interacting residues in protein-protein complexes from sequence data. PLoS ONE. 2011;6(12)e29104 PubMed PMC
Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research. 2011;39(2):W270–W277. PubMed PMC
Dolghih E, Bryant C, Renslo AR, Jacobson MP. Predicting binding to P-glycoprotein by flexible receptor docking. PLoS Computational Biology. 2011;7(6)e1002083 PubMed PMC
Prakhov ND, Chernorudskiy AL, Gainullin MR. VSDocker: a tool for parallel high-throughput virtual screening using AutoDock on Windows-based computer clusters. Bioinformatics. 2010;26(10):1374–1375. PubMed
Ren J, Williams N, Clementi L, Krishnan S, Li WW. Opal web services for biomedical applications. Nucleic Acids Research. 2010;38(2):W724–W731. PubMed PMC
Zhang Q, Yang J, Liang K, et al. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 Subtype) of human influenza virus by the integration of molecular ducking, FMO calculation and 3D-QSAR CoMFA modeling. Journal of Chemical Information and Modeling. 2008;48(9):1802–1812. PubMed
Li H, Gao Z, Kang L, et al. TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Research. 2006;34:W219–W224. PubMed PMC
Martin L, Catherinot V, Labesse G. kinDOCK: a tool for comparative docking of protein kinase ligands. Nucleic Acids Research. 2006;34:W325–W329. PubMed PMC
Lavecchia A, Cosconati S, Limongelli V, Novellino E. Modeling of Cdc25B dual specifity protein phosphatase inhibitors: docking of ligands and enzymatic inhibition mechanism. ChemMedChem. 2006;1(5):540–550. PubMed
Schapira M, Raaka BM, Das S, et al. Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(12):7354–7359. PubMed PMC
Chen R, Li L, Weng Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins. 2003;52(1):80–87. PubMed
Pierce B, Tong W, Weng Z. M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Bioinformatics. 2005;21(8):1472–1478. PubMed
Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW. Spatial clustering of protein binding sites for template based protein docking. Bioinformatics. 2011;27(20):2820–2827. PubMed
Lyskov S, Gray JJ. The RosettaDock server for local protein-protein docking. Nucleic acids research. 2008;36:W233–238. PubMed PMC
Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2004;20(1):45–50. PubMed
Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Research. 2004;32:W96–W99. PubMed PMC
Tuszynska I, Bujnicki JM. DARS-RNP and QUASI-RNP: new statistical potentials for protein-RNA docking. BMC Bioinformatics. 2011;12, article 348 PubMed PMC
Liu Z, Guo JT, Li T, Xu Y. Structure-based prediction of transcription factor binding sites using a protein-DNA docking approach. Proteins. 2008;72(4):1114–1124. PubMed
Xu B, Yang Y, Liang H, Zhou Y. An all-atom knowledge-based energy function for protein-DNA threading, docking decoy discrimination, and prediction of transcription-factor binding profiles. Proteins. 2009;76(3):718–730. PubMed PMC
Patronov A, Dimitrov I, Flower DR, Doytchinova I. Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach. BMC Structural Biology. 2011;11, article 32 PubMed PMC
Sircar A, Gray JJ. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models. PLoS Computational Biology. 2010;6(1)e1000644 PubMed PMC
Khan JM, Ranganathan S. PDOCK: a new technique for rapid and accurate docking of peptide ligands to Major Histocompatibility Complexes. Immunome Research. 2010;6(supplement 1, article S2) PubMed PMC
Todman SJ, Halling-Brown MD, Davies MN, Flower DR, Kayikci M, Moss DS. Toward the atomistic simulation of T cell epitopes. Automated construction of MHC: peptide structures for free energy calculations. Journal of Molecular Graphics and Modelling. 2008;26(6):957–961. PubMed
Sathyapriya R, Vijayabaskar MS, Vishveshwara S. Insights into protein-DNA interactions through structure network analysis. PLoS Computational Biology. 2008;4(9)e1000170 PubMed PMC
Saiz L, Vilar JMG. Protein-protein/DNA interaction networks: versatile macromolecular structures for the control of gene expression. IET Systems Biology. 2008;2(5):247–255. PubMed
Mata J. Genome-wide mapping of myosin protein-RNA networks suggests the existence of specialized protein production sites. The FASEB Journal. 2010;24(2):479–484. PubMed
Ascano M, Hafner M, Cekan P, Gerstberger S, Tuschl T. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdisciplinary Reviews: RNA. 2011;3(2):159–177. PubMed PMC
Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(21):12123–12128. PubMed PMC
Wang J, Li M, Deng Y, Pan Y. Recent advances in clustering methods for protein interaction networks. BMC Genomics. 2010;11(3, article S10) PubMed PMC
Wu Z, Zhao X, Chen L. Identifying responsive functional modules from protein-protein interaction network. Molecules and Cells. 2009;27(3):271–277. PubMed
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298(5594):824–827. PubMed
Ciriello G, Guerra C. A review on models and algorithms for motif discovery in protein-protein interaction networks. Briefings in Functional Genomics and Proteomics. 2008;7(2):147–156. PubMed
Dutkowski J, Tiuryn J. Identification of functional modules from conserved ancestral protein-protein interactions. Bioinformatics. 2007;23(13):i149–i158. PubMed
Qian X, Yoon BJ. Effective identification of conserved pathways in biological networks using hidden Markov models. PLoS ONE. 2009;4(12)e8070 PubMed PMC
Lim J, Hao T, Shaw C, et al. A protein-protein interaction network for human inherited ataxias and disorders of purkinje cell degeneration. Cell. 2006;125(4):801–814. PubMed
Wang L, Khankhanian P, Baranzini SE, Mousavi P. iCTNet: a Cytoscape plugin to produce and analyze integrative complex traits networks. BMC Bioinformatics. 2011;12, article 380 PubMed PMC
Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ. Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Computational Biology. 2010;6(2)e1000662 PubMed PMC
Dutta B, Pusztai L, Qi Y, et al. A network-based, integrative study to identify core biological pathways that drive breast cancer clinical subtypes. British Journal of Cancer. 2012;106(6):1107–1116. PubMed PMC
Erten S, Bebek G, Koyutürk M. Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks. Journal of Computational Biology. 2011;18(11):1561–1574. PubMed PMC
Nitsch D, Tranchevent LC, Gonalves JP, Vogt JK, Madeira SC, Moreau Y. PINTA: a web server for network-based gene prioritization from expression data. Nucleic Acids Research. 2011;39(2):W334–W338. PubMed PMC
Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. Flexible nets: the roles of intrinsic disorder in protein interaction networks. The FEBS Journal. 2005;272(20):5129–5148. PubMed
Patil A, Kinoshita K, Nakamura H. Hub promiscuity in protein-protein interaction networks. International Journal of Molecular Sciences. 2010;11(4):1930–1943. PubMed PMC
Patil A, Kinoshita K, Nakamura H. Domain distribution and intrinsic disorder in hubs in the human protein-protein interaction network. Protein Science. 2010;19(8):1461–1468. PubMed PMC
Bustos DM. The role of protein disorder in the 14-3-3 interaction network. Molecular Biosystems. 2012;8(1):178–184. PubMed
Ivanyi-Nagy R, Darlix JL. Intrinsic disorder in the core proteins of flaviviruses. Protein and Peptide Letters. 2010;17(8):1019–1025. PubMed
Wang J, Cao Z, Zhao L, Li S. Novel strategies for drug discovery based on intrinsically disordered proteins (IDPs) International Journal of Molecular Sciences. 2011;12(5):3205–3219. PubMed PMC
Ekman D, Light S, Björklund AK, Elofsson A. What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biology. 2006;7(6, article R45) PubMed PMC
Singh GP, Ganapathi M, Dash D. Role of intrinsic disorder in transient interactions of hub proteins. Proteins. 2007;66(4):761–765. PubMed
Kahali B, Ahmad S, Ghosh TC. Exploring the evolutionary rate differences of party hub and date hub proteins in Saccharomyces cerevisiae protein-protein interaction network. Gene. 2009;429(1-2):18–22. PubMed
Katebi AR, Kloczkowski A, Jernigan RL. Structural interpretation of protein-protein interaction network. BMC Structural Biology. 2010;10(supplement 1, article S4) PubMed PMC
Wang F, Liu M, Song B, et al. Prediction and characterization of protein-protein interaction networks in swine. Proteome Science. 2012;10, article 2 PubMed PMC
Pang E, Lin K. Yeast protein-protein interaction binding sites: prediction from the motif-motif, motif-domain and domain-domain levels. Molecular BioSystems. 2010;6(11):2164–2173. PubMed
Kalaev M, Smoot M, Ideker T, Sharan R. NetworkBLAST: comparative analysis of protein networks. Bioinformatics. 2008;24(4):594–596. PubMed
Jung SH, Hyun B, Jang WH, Hur HY, Han DS. Protein complex prediction based on simultaneous protein interaction network. Bioinformatics. 2009;26(3):385–391. PubMed
Lo Y-S, Lin CY, Yang JM. PCFamily: a web server for searching homologous protein complexes. Nucleic Acids Research. 2010;38(2):W516–W522. PubMed PMC
Phan HT, Sternberg MJ. PINALOG: a novel approach to align protein interaction networks—implications for complex detection and function prediction. Bioinformatics. 2012;28:1239–1245. PubMed PMC
Fox AD, Hescott BJ, Blumer AC, Slonim DK. Connectedness of PPI network neighborhoods identifies regulatory hub proteins. Bioinformatics. 2011;27(8):1135–1142. PubMed PMC
Becker E, Robisson B, Chapple CE, Guénoche A, Brun C. Multifunctional proteins revealed by overlapping clustering in protein interaction network. Bioinformatics. 2012;28(1):84–90. PubMed PMC
Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T. Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics. 2008;24(13):i223–i231. PubMed PMC
Sun CH, Hwang T, Oh K, Yi GS. DynaMod: dynamic functional modularity analysis. Nucleic Acids Research. 2010;38(2):W103–W108. PubMed PMC
Cui G, Shrestha R, Han K. ModuleSearch: finding functional modules in a protein-protein interaction network. Computer Methods in Biomechanics and Biomedical Engineering. 2012;15(7):691–699. PubMed
Erten S, Bebek G, Ewing RM, Koyutürk M. DADA: degree-aware algorithms for network-based disease gene prioritization. BioData Mining. 2011;4(1, article 19) PubMed PMC
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research. 2003;13(11):2498–2504. PubMed PMC
Martin A, Ochagavia ME, Rabasa LC, Miranda J, Fernandez-de-Cossio J, Bringas R. BisoGenet: a new tool for gene network building, visualization and analysis. BMC Bioinformatics. 2010;11, article 91 PubMed PMC
Bruckner S, Hüffner F, Karp RM, Shamir R, Sharan R. Torque: topology-free querying of protein interaction networks. Nucleic Acids Research. 2009;37(2):W106–W108. PubMed PMC
Franzosa E, Linghu B, Xia Y. Computational reconstruction of protein-protein interaction networks: algorithms and issues. Methods in Molecular Biology. 2009;541:89–100. PubMed
Li SS, Wu C. Using peptide array to identify binding motifs and interaction networks for modular domains. Methods in Molecular Biology. 2009;570:67–76. PubMed
Sardiu ME, Washburn MP. Building protein-protein interaction networks with proteomics and informatics tools. Journal of Biological Chemistry. 2011;286(27):23645–23651. PubMed PMC
Sanz-Pamplona R, Berenguer A, Sole X, et al. Tools for protein-protein interaction network analysis in cancer research. Clinical and Translational Oncology. 2012;14(1):3–14. PubMed
Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research. 2011;39(1):D561–D568. PubMed PMC
Taboureau O, Nielsen SK, Audouze K, et al. ChemProt: a disease chemical biology database. Nucleic Acids Research. 2011;39(1):D367–D372. PubMed PMC
Tacutu R, Budovsky A, Fraifeld VE. The NetAge database: a compendium of networks for longevity, age-related diseases and associated processes. Biogerontology. 2010;11(4):513–522. PubMed
Breitkreutz B-J, Stark C, Reguly T, et al. The BioGRID interaction Database: 2008 update. Nucleic Acids Research. 2008;36(1):D637–D640. PubMed PMC
Hsu CN, Lai JM, Liu CH, et al. Detection of the inferred interaction network in hepatocellular carcinoma from EHCO (Encyclopedia of Hepatocellular Carcinoma genes Online) BMC Bioinformatics. 2007;8, article 66 PubMed PMC
Xia K, Dong D, Han JDJ. IntNetDB v1.0: an integrated protein-protein interaction network database generated by a probabilistic model. BMC Bioinformatics. 2006;7, article 508 PubMed PMC
Fong JH, Marchler-Bauer A. Protein subfamily assignment using the Conserved Domain Database. BMC Research Notes. 2008;1, article 114 PubMed PMC
Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. Journal of Chemical Information and Modeling. 2008;48(12):2371–2385. PubMed