Hydrogen peroxide route to Sn-doped titania photocatalysts

. 2012 Oct 05 ; 6 (1) : 113. [epub] 20121005

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23035821

BACKGROUND: The work aims at improving photocatalytic activity of titania under Vis light irradiation using modification by Sn ions and an original, simple synthesis method. Tin-doped titania catalysts were prepared by thermal hydrolysis of aqueous solutions of titanium peroxo-complexes in the presence of SnCl4 or SnCl2 using an original, proprietary "one pot" synthesis not employing organic solvents, metallo-organic precursors, autoclave aging nor post-synthesis calcination. The products were characterized in details by powder diffraction, XPS, UV-vis, IR, and Raman spectroscopies, electron microscopy and surface area and porosity measurements RESULTS: The presence of tin in synthesis mixtures favors the formation of rutile and brookite at the expense of anatase, decreases the particle size of all formed titania polymorphs, and extends light absorption of titania to visible light region >400 nm by both red shift of the absorption edge and introduction of new chromophores. The photocatalytic activity of titania under UV irradiation and >400 nm light was tested by decomposition kinetics of Orange II dye in aqueous solution CONCLUSIONS: Doping by Sn improves titania photoactivity under UV light and affords considerable photoactivity under >400 nm light due to increased specific surface area and a phase heterogeneity of the Sn-doped titania powders.

Zobrazit více v PubMed

Vinodgopal K, Kamat PV. Enhanced rates of photocatalytic degradation of an azo-dye using SnO2/TiO2 coupled semiconductor thin-films. Environ Sci Technol. 1995;29(3):841–845. PubMed

Lin J, Yu JC, Lo D, Lam SK. Photocatalytic activity of rutile Ti1-xSnxO2 solid solutions. J Catal. 1999;183(2):368–372.

Oropeza FE, Davies B, Palgrave RG, Egdell RG. Electronic basis of visible region activity in high area Sn-doped rutile TiO2 photocatalysts. Phys Chem Chem Phys. 2011;13(17):7882–7891. PubMed

Cao YA, Yang WS, Zhang WF, Liu GZ, Yue PL. Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New Journal of Chemistry. 2004;28(2):218–222.

Sayilkan F, Asiltuerk M, Tatar P, Kiraz N, Sener S, Arpac E, Sayilkan H. Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights. Mater Res Bull. 2008;43(1):127–134.

Boppana VBR, Lobo RF. Photocatalytic degradation of organic molecules on mesoporous visible-light-active Sn(II)-doped titania. J Catal. 2011;281(1):156–168.

Zhao Y, Liu J, Shi LY, Yuan SA, Fang JH, Wang ZY, Zhang MH. Surfactant-free synthesis uniform Ti1-xSnxO2 nanocrystal colloids and their photocatalytic performance. Appl Catal B-Environ. 2010;100(1–2):68–76.

Hirano M, Dozono H, Kono T. Hydrothermal synthesis and properties of solid solutions and composite nanoparticles in the TiO2-SnO2 system. Mater Res Bull. 2011;46(9):1384–1390.

Liu J, Zhao Y, Shi LY, Yuan SA, Fang JH, Wang ZY, Zhang MH. Solvothermal Synthesis of Crystalline Phase and Shape Controlled Sn4+-Doped TiO2 Nanocrystals: Effects of Reaction Solvent. ACS Applied Materials & Interfaces. 2011;3(4):1261–1268. PubMed

Cerny Z, Stengl V. Method of production photocatalytic active monodispersed titanium(IV) oxide. CZ 301 006 B6, Czech Rep. 2009.

Stengl V, Bakardjieva S. Molybdenum-Doped Anatase and Its Extraordinary Photocatalytic Activity in the Degradation of Orange II in the UV and vis Regions. J Phys Chem C. 2010;114(45):19308–19317.

Stengl V, Velicka J, Marikova M, Matys Grygar T. New Generation Photocatalysts: How Tungsten Influences the Nanostructure and Photocatalytic Activity of TiO2 in the UV and Visible Regions. ACS Applied Materials & Interfaces. 2011;3(10):4014–4023. PubMed

Bakardjieva S, Subrt J, Stengl V, Perez-Maqueda LA, Alario-Franco MA. Characterization of photocatylitically active TiO2 by electron microscopy: Proceedings of the 5th Multinational Congress on Electron Microscopy. Lecce, Italy: Rinton Press, Inc, 565 Edmund Terrace, Princeton, NJ 07652 USA; 2001. pp. 463–464. Conference: 5th Multinational Congress on Electron Microscopy.

Stengl V, Subrt J, Bezdicka P, Marikova M, Bakardjieva S. In: Conference: 5th International Conference on Solid State Chemistry. Sajgalik P, Drabik M, Varga S, editor. Bratislava, Slovakia: Trans Tech Publications Ltd, Brandrain 6, CH-8707 Zurich-Uetikon, Switzerland; 2003. Homogeneous precipitation with urea - An easy process for making spherical hydrous metal oxides; pp. 121–126. (Solid State Phenomena, Volume: 90-91). Date: Jul 07-12, 200, Solid State Chemistry V.

Krysa J, Keppert M, Jirkovsky J, Stengl V, Subrt J. The effect of thermal treatment on the properties of TiO2 photocatalyst. Mater Chem Phys. 2004;86(2–3):333–339.

Stengl V, Bakardjieva S, Murafa N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys. 2009;114(1):217–226.

Václav Štengl, Tomáš Matys Grygar. The Simplest Way to Iodine-Doped Anatase for Photocatalysts Activated by Visible Light. International Journal of Photoenergy. 2011;2011(Article ID 685935):13. doi: 10.1155/2011/685935. DOI

Stengl V, Bakardjieva S, Bludska J. Se and Te-modified titania for photocatalytic applications. J Mater Sci. 2011;46(10):3523–3536.

Sui RH, Young JL, Berlinguette CP. Sol–gel synthesis of linear Sn-doped TiO2 nanostructures. J Mater Chem. 2010;20(3):498–503.

Li DR, Sun LN, Hu CW. Simple Preparation of the Photocatalyst of Sn2+-doped Titania. Chin Chem Lett. 2006;17(8):1089–1092.

Stengl V, Houskova V, Bakardjieva S, Murafa N, Havlin V. Optically Transparent Titanium Dioxide Particles Incorporated in Poly(hydroxyethyl methacrylate) Thin Layers. J Phys Chem C. 2008;112(50):19979–19985.

Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C. et al.Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal Environ. 2002;39(1):75–90.

Ohtani B. Photocatalysis A, to Z-What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2010;11(4):157–178.

Nag M, Basak P, Manorama SV. Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals: Time temperature tuning of morphology and photocatalytic activity. Mater Res Bull. 2007;42(9):1691–1704.

Aruna ST, Tirosh S, Zaban A. Nanosize rutile titania particle synthesis a hydrothermal method without mineralizers. J Mater Chem. 2000;10(10):2388–2391.

Subrt J, Stengl V. Preparation of acicular alpha-Fe2O3 (Hematite) J Mater Sci Lett. 1993;12(11):836–838.

Kumar KNP, Keizer K, Burggraaf AJ. Stabilization of the Porous Texture of Nanostructured Titania by Avoiding a Phase-Transformation. J Mater Sci Lett. 1994;13(1):59–61.

Cheng HM, Ma JM, Zhao ZG, Qi LM. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater. 1995;7(4):663–671.

Li JG, Ishigaki T, Sun XD. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J Phys Chem C. 2007;111(13):4969–4976.

Liu G, Yang HG, Sun CH, Cheng LN, Wang LZ, Lu GQ, Cheng HM. Titania polymorphs derived from crystalline titanium diboride. CrystEngComm. 2009;11(12):2677–2682.

Pottier A, Chaneac C, Tronc E, Mazerolles L, Jolivet JP. Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J Mater Chem. 2001;11(4):1116–1121.

Kobayashi M, Petrykin V, Tomita K, Kakihana M. Hydrothermal synthesis of brookite-type titanium dioxide with snowflake-like nanostructures using a water-soluble citratoperoxotitanate complex. J Cryst Growth. 2011;337(1):30–37.

Zhao J, Wang Z, Wang L, Yang H, Zhao M. Effect of Nuclei on the Formation of Rutile Titania. J Mater Sci Lett. 1998;17(22):1867–1869.

Stengl V, Kralova D. Photoactivity of brookite-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of hydrothermally prepared brookite. Mater Chem Phys. 2011;129(3):794–801.

Pullar RC, Penn SJ, Wang X, Reaney IM, Alford NM. Dielectric loss caused by oxygen vacancies in titania ceramics. J Eur Ceram Soc. 2009;29(3):419–424.

Wu S, Wang G, Wang S, Liu D. Effect of Sn4+ B-Site Substitution on the Microstructure and Dielectric Properties of Ba(Mg1/3Ta2/3)O3 Microwave Ceramics. J Mater Sci Technol. 2005;21(5):773–775.

Cox H, Stace AJ. Molecular View of the Anomalous Acidities of Sn2+, Pb2+, and Hg2+ J Am Chem Soc. 2004;126(12):3939–3947. PubMed

Shi ZM, Yan L, Jin LN, Lu XM, Zhao G. The phase transformation behaviors of Sn2 + −doped Titania gels. J Non-Cryst Solids. 2007;353(22–23):2171–2178.

Krishnamurti D. The Raman spectrum of rutile. Proceeding of Indian Academy of Sciences Section A. Indian Academy of Sciences. 1962;55:290–299.

Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM. The Raman spectrum of brookite, TiO2 (PBCA, Z = 8) Journal of Raman Spectroscopy. 1995;26(1):57–62.

Swamy V, Muddle BC, Dai Q. Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl Phys Lett. 2006;89(16)

Choi HC, Jung YM, Kim SB. Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc. 2005;37(1):33–38.

Chen L-C, Tsai F-R, Fang S-H, Ho Y-C. Properties of sol–gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination. Electrochim Acta. 2009;54(4):1304–1311.

Kelly S, Pollak FH, Tomkiewicz M. Raman spectroscopy as a morphological probe for TiO2 aerogels. Journal of Physical Chemistry B. 1997;101(14):2730–2734.

Kamisaka H, Suenaga T, Nakamura H, Yamashita K. DFT-Based Theoretical Calculations of Nb- and W-Doped Anatase TiO2 Complex Formation between W Dopants and Oxygen Vacancies. J Phys Chem C. 2010;114(29):12777–12783.

Shao GS, Zhang XJ, Yuan ZY. Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx. Appl Catal Environ. 2008;82(3–4):208–218.

Connor PA, Dobson KD, McQuillan AJ. Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir. 1999;15(7):2402–2408.

Jere GV, Patel CC. Infrared absorption studies on peroxy titanium sulphate. Canadian Journal of Chemistry-Revue Canadienne De Chimie. 1962;40(8):1576–1578.

Nakamura R, Imanishi A, Murakoshi K, Nakato Y. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J Am Chem Soc. 2003;125(24):7443–7450. PubMed

Lin W, Zhang YF, Li Y, Ding KN, Li JQ, Xu YJ. Structural characterizations and electronic properties of Ti-doped SnO2 (110) surface: A first-principles study. J Chem Phys. 2006;124(5):054704. PubMed

Cao YQ, He T, Zhao LS, Wang EJ, Yang WS, Cao YA. Structure and Phase Transition Behavior of Sn4+-Doped TiO2 Nanoparticles. J Phys Chem C. 2009;113(42):18121–18124.

Kim KS, Winograd N. Charge-transfer shake-up satellites in X-ray photoelectron-spectra of cations and anions of SrTiO3, TiO2 and Sc2O3. Chem Phys Lett. 1975;31(2):312–317.

Ayouchi R, Martin F, Barrado JRR, Martos M, Morales J, Sanchez L. Use of amorphous tin-oxide films obtained by spray pyrolysis as electrodes in lithium batteries. Journal of Power Sources. 2000;87(1–2):106–111.

Song SK, Cho JS, Choi WK, Jung HJ, Choi DS, Lee JY, Baik HK, Koh SK. Structure and gas-sensing characteristics of undoped tin oxide thin films fabricated by ion-assisted deposition. Sensors and Actuators B-Chemical. 1998;46(1):42–49.

Tsunekawa S, Kang J, Asami K, Kawazoe Y, Kasuya A. Size and time dependences of the valence states of Sn ions in amphoteric tin oxide nanoparticles. Appl Surf Sci. 2002;201(1–4):69–74.

Barreca D, Garon S, Tondello E, Zanella P. SnO2 Nanocrystalline Thin Films by XPS. Surface Science Spectra. 2000;7(2):81–85.

Strýhal Z, Stofík M, Malý J, Pavlík J. Periodically arranged tin and tin oxide nanoparticles. Proceedings of ICTF 14 & RSD. Gent: University of Gent; 2008. pp. 306–310.

de Boer JA. In: The Structure and Properties of Porous Materials. Everett DH, Stone FS, editor. London: Butterworths; 1958. The Shape of capillaries; pp. 68–92.

Wen PH, Itoh H, Tang WP, Feng Q. Single nanocrystals of anatase-type TiO2 prepared from layered titanate nanosheets: Formation mechanism and characterization of surface properties. Langmuir. 2007;23(23):11782–11790. PubMed

Pan J, Liu G, Lu GM, Cheng HM. On the True Photoreactivity Order of 001}, {010}, and {101 Facets of Anatase TiO2 Crystals. Angew Chem Int Ed. 2011;50(9):2133–2137. PubMed

Liu G, Yu JC, Lu GQ, Cheng H-M. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun. 2011;47(24):6763–6783. PubMed

Kumar SG, Devi LG. Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J Phys Chem A. 2011;115(46):13211–13241. PubMed

Fang WQ, Gong X-Q, Yang HG. On the Unusual Properties of Anatase TiO2 Exposed by Highly Reactive Facets. J Phys Chem Lett. 2011;2(7):725–734.

Orel ZC, Gunde MK, Orel B. Application of the Kubelka-Munk theory for the determination of the optical properties of solar absorbing paints. Progress in Organic Coatings. 1997;30(1–2):59–66.

Zhao WR, Shi HX, Wang DH. Ozonation of Cationic Red X-GRL in aqueous solution: degradation and mechanism. Chemosphere. 2004;57(9):1189–1199. PubMed

Demirev A, Nenov V. Ozonation of two acidic azo dyes with different substituents. Ozone Sci Eng. 2005;27(6):475–485.

Stylidi M, Kondarides DI, Verykios XE. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Appl Catal Environ. 2004;47(3):189–201.

Mu Y, Yu HQ, Zheng JC, Zhang SJ. TiO2-mediated photocatalytic degradation of Orange II with the presence of Mn2+ in solution. Journal of Photochemistry and Photobiology A-Chemistry. 2004;163(3):311–316.

Yu QL, Ballari MM, Brouwers HJH. Indoor air purification using heterogeneous photocatalytic oxidation. Part II: Kinetic study. Applied Catalysis B-Environmental. 2010;99(1–2):58–65.

Ischia M, Campostrini R, Lutterotti L, Garcia-Lopez E, Palmisano L, Schiavello M, Pirillo F, Molinari R. Synthesis, characterization and photocatalytic activity of TiO2 powders prepared under different gelling and pressure conditions. Journal of Sol–gel Science and Technology. 2005;33(2):201–213.

Fresno F, Guillard C, Coronado JM, Chovelon JM, Tudela D, Soria J, Herrmann JM. Photocatalytic degradation of a sulfonylurea herbicide over pure and tin-doped TiO2 photocatalysts. Journal of Photochemistry and Photobiology A-Chemistry. 2005;173(1):13–20.

Henych J. Titanium Oxide and Its Photocatalytic Activity (in Czech) Thesis: J.E. Purkyně University in Ústí nad Labem; 2010.

Stengl V, Houskova V, Bakardjieva S, Murafa N. Photocatalytic Activity of Boron-Modified Titania under UV and Visible-Light Illumination. ACS Applied Materials & Interfaces. 2010;2(2):575–580. PubMed

Stengl V, Matys Grygar T, Oplustil F, Nemec T. Sulphur mustard degradation on zirconium doped Ti-Fe oxides. J Hazard Mater. 2011;192(3):1491–1504. PubMed

Jcpds PDF. Release 50. Newtown Square: International Centre for Diffraction Data; 2000.

ICSD Database FIZ Karlsruhe G.

Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–319.

Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73(1):373–380.

Christy AA, Kvalheim OM, Velapoldi RA. Quantitative-analysis in diffuse-reflectance spectrometry - a modified Kubelka-Munk equation. Vib Spectrosc. 1995;9(1):19–27.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Anthracycline antibiotics derivate mitoxantrone-Destructive sorption and photocatalytic degradation

. 2018 ; 13 (3) : e0193116. [epub] 20180313

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace