Production of hyaluronic acid by mutant strains of group C Streptococcus
Jazyk angličtina Země Švýcarsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bakteriální geny MeSH
- biomasa MeSH
- biotechnologie MeSH
- kyselina hyaluronová chemie metabolismus MeSH
- mutace * MeSH
- mutageneze cílená metody MeSH
- plazmidy genetika MeSH
- promotorové oblasti (genetika) MeSH
- Streptococcus equi genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina hyaluronová MeSH
This study addresses the influence of upstream region sequence on the strength of has operon promoter in highly encapsulated S. equi subsp. zooepidemicus (SEZ). For this purpose, seven different strains were constructed. Each strain carries a point mutation in one of the following positions upstream of the has promoter: -43, -44, -49, and -50 bp. To facilitate measuring of the recombinant promoter relative strength, ß-glucuronidase gene was used as a reporter gene. Three mutations located in positions -49 and -50: AT, GT, and AG, positively impacted has promoter strength when compared to the wild type sequence GG. Conversely, two other mutations: TG and TT, exhibited a slight inhibitory effect. Further, three different strains carrying chromosomal mutations in the has promoter region were constructed. In two cases, the has operon is under the control of a stronger promoter and in the third strain the has operon is controlled by a weaker promoter. The laboratory fermenter scale cultivations confirmed the increase of hyaluronan yields for SEZPhasAG and SEZPhas2G, resulting 116 and 105 %, respectively. As expected, the yield of the hyaluronic acid of SEZPhas2B strain fell to 41 %.
Zobrazit více v PubMed
J Biol Chem. 1987 Oct 5;262(28):13654-61 PubMed
Appl Microbiol Biotechnol. 2005 Jan;66(4):341-51 PubMed
Mol Biotechnol. 2011 Oct;49(2):166-75 PubMed
Glycobiology. 2001 Dec;11(12):1017-24 PubMed
Virology. 1999 Apr 25;257(1):15-23 PubMed
Appl Environ Microbiol. 2005 Jul;71(7):3747-52 PubMed
J Biol Chem. 1993 Apr 5;268(10):7118-24 PubMed
Metab Eng. 2010 Jan;12(1):62-9 PubMed
J Biol Chem. 1997 May 30;272(22):13997-4000 PubMed
J Biol Chem. 2006 Apr 28;281(17):11755-60 PubMed
Science. 1997 Dec 5;278(5344):1800-3 PubMed
FASEB J. 1992 Apr;6(7):2397-404 PubMed
Curr Opin Cell Biol. 2000 Oct;12(5):581-6 PubMed
J Biol Chem. 2007 Dec 21;282(51):36777-81 PubMed
Infect Immun. 1997 Apr;65(4):1422-30 PubMed
IUBMB Life. 2002 Oct;54(4):201-11 PubMed
J Biol Chem. 1994 Jan 7;269(1):169-75 PubMed
J Biol Chem. 1995 Aug 4;270(31):18452-8 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Appl Microbiol Biotechnol. 2006 Jul;71(4):415-22 PubMed
Mol Microbiol. 1990 Jul;4(7):1143-52 PubMed
Appl Microbiol Biotechnol. 2007 Apr;74(5):1016-22 PubMed
Res Vet Sci. 1999 Oct;67(2):131-5 PubMed
EMBO J. 1990 Jul;9(7):2215-20 PubMed
J Biol Chem. 2002 Apr 19;277(16):13943-51 PubMed
J Biosci Bioeng. 2005 Jun;99(6):521-8 PubMed
Int J Biol Macromol. 1994 Dec;16(6):283-6 PubMed
Virology. 1998 Oct 25;250(2):388-96 PubMed
Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12238-42 PubMed
J Biol Chem. 1993 Sep 15;268(26):19181-4 PubMed
J Bacteriol. 1995 Nov;177(22):6619-24 PubMed
Med Microbiol Immunol. 1996 May;185(1):11-7 PubMed
J Mol Evol. 2008 Jul;67(1):13-22 PubMed
J Clin Invest. 1996 Nov 1;98(9):1954-8 PubMed
Mol Microbiol. 1998 Apr;28(2):343-53 PubMed
J Biol Chem. 2009 Jul 3;284(27):18007-14 PubMed
Infect Immun. 1997 Jan;65(1):64-71 PubMed
Equine Vet J. 1989 Sep;21(5):351-3 PubMed
J Infect Dis. 1992 Aug;166(2):374-82 PubMed
Biotechnol Prog. 2007 Sep-Oct;23(5):1017-22 PubMed
Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8317-21 PubMed