Electromagnetic field of microtubules: effects on transfer of mass particles and electrons

. 2005 Dec ; 31 (3-4) : 501-14.

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23345914

Biological polar molecules and polymer structures with energy supply (such as microtubules in the cytoskeleton) can get excited and generate an endogenous electromagnetic field with strong electrical component in their vicinity. The endogenous electrical fields through action on charges, on dipoles and multipoles, and through polarization (causing dielectrophoretic effect) exert forces and can drive charges and particles in the cell. The transport of mass particles and electrons is analyzed as a Wiener-Lévy process with inclusion of deterministic force (validity of the Bloch theorem is assumed for transport of electrons in molecular chains too). We compare transport driven by deterministic forces (together with an inseparable thermal component) with that driven thermally and evaluate the probability to reach the target. Deterministic forces can transport particles and electrons with higher probability than forces of thermal origin only. The effect of deterministic forces on directed transport is dominant.

Zobrazit více v PubMed

Groot M.L., Vos M.H., Schlichting I., van Mourik F., Joffre M., Lambry J.C., Martin J.-L.Coherent Infrared Emission from Myoglobin Crystals: An Electric Field Measurement Proc. Natl. Acad. Sci. U.S.A. 20029931323–1328.10.1073/pnas.2516626982002PNAS...99.1323G PubMed DOI PMC

Vos M.H., Lambry J.C., Martin J.-L. Excited State Coherent Vibrational Motion in Deoxymyoglobin. J. Chin. Chem. Soc. 2000;47(4A):765–768.

Liebl U., Lipowski G., Negrerie M., Lambry J.C., Martin J.-L., Vos M.H.Coherent Reaction Dynamics in a Bacterial Cytochrome c Oxidase Nature 19994016749181–184.1999Natur.401..181L PubMed

Lambry, J.C., Vos, M.H. and Martin, J.-L.: Molecular Dynamics Simulation of Carbon Monoxide Dissociation from Heme a(3) in Cytochrome c Oxidase from Paracoccus denitrificans, J. Phys. Chem. A103(49), (1999), 10132–10137.

Bonvalet A., Nagle J., Berger V., Migus A., Martin J.-L., Joffre M.Femtosecond Infrared Emission Resulting from Coherent Charge Oscillations in Quantum Wells Phys. Rev. Lett. 199676234392–4395.10.1103/PhysRevLett.76.43921996PhRvL..76.4392B PubMed DOI

Vos M.H., Martin J.-L. Femtosecond Processes in Proteins. Biochem. Biophys. Acta. 1999;1411:1–20. PubMed

Pokorný J. Endogenous Electromagnetic Forces in Living Cells: Implications for Transfer of Reaction Components. Electro- Magnetobiol. 2001;20(1):59–73.

Li W., Kaneko K.Long-Range Correlation and Partial 1/fα Spectrum in Noncoding DNA Sequence Europhys. Lett. 199217655–660.1992EL.....17..655L

Voss R.F.Evolution of Long-Range Fractal Correlations and 1/f Noise in DNA Base Sequences Phys. Rev. Lett. 1992683805–3808.10.1103/PhysRevLett.68.38051992PhRvL..68.3805V PubMed DOI

Arneodo A., Bacry E., Graves P.V., Muzy J.F.Characterizing Long-Range Correlations in DNA Sequences from Wavelet Analysis Phys. Rev. Lett. 1995743293–3296.1995PhRvL..74.3293A PubMed

Buldyrev S.V., Goldberger A.L., Havlin S., Mantegna R.N., Matsa M.E., Peng C.-K., Simons M., Stanley E.H.Long-Range Correlation Properties of Coding and Noncoding DNA Sequences: GenBank Analysis Phys. Rev. E 1995515084–5091.10.1103/PhysRevE.51.50841995PhRvE..51.5084B PubMed DOI

Herzel H., Grosse I.Correlations in DNA Sequences: The Role of Protein Coding Segments Phys. Rev. E 199755800–810.10.1103/PhysRevE.55.8001997PhRvE..55..800H DOI

Audit B., Thermes C., Vaillant C., d'Aubenton-Carafa Y., Muzy J.F., Arneodo A.Long-Range Correlation in Genomic DNA: A Signature of the Nucleosomal Structure Phys. Rev. Lett. 2001862471–2474.10.1103/PhysRevLett.86.24712001PhRvL..86.2471A PubMed DOI

Holste, D. and Grosse, I.: Repeats and Correlations in Human DNA Sequences, Phys. Rev. E67 (2003), 061913-1–061913-7. PubMed

Maciá, E., Domínguez-Adame, F. and Sánchez, A.: Effects of the Electronic Structure on the dc Conductance of Fibonacci Superlattices, Phys. Rev. B49 (1994-II), 9503–9510. PubMed

Roche, S., Bicout, D., Maciá, E. and Kats, E.: Long Range Correlations in DNA: Scaling Properties and Charge Transfer Efficiency, Phys. Rev. Lett. 91 (2003), 228101-1–228101-4. PubMed

Bicout D.J., Kats E.Long-Range Electron Transfer in Periodic Nucleotide Base Stacks Phys. Lett. A 2002300479–484.10.1016/S0375-9601(02)00848-42002PhLA..300..479B DOI

Schulz G.E., Schirmer R.H. Principles of Protein Structure. Berlin: Springer; 1979.

Ladik J., Förner W. The Beginnings of Cancer in the Cell. Berlin: Springer; 1994.

Huang X.Q., Jiang S.S., Peng R.W., Liu Y.M., Qiu F., Hu A.Characteristic Wavefunctions of One-Dimensional Periodic, Quasiperiodic and Random Lattices Modern Phys. Lett. B 2003171461–1476.2003MPLB...17.1461H10.1142/S0217984903006530 DOI

Frauenfelder H., Wolynes P.G., Austin R.H. Biological Physics. Rev. Mod. Phys. Centenary. 1999;71(2):S419–S430.

Fröhlich, H.: Quantum Mechanical Concepts in Biology, in M. Marois (ed.), Theoretical Physics and Biology, North Holland, Amsterdam, 1969, pp.13–22.

Fröhlich H.Bose Condensation of Strongly Excited Longitudinal Electric Modes Phys. Lett. A 196826402–403.1968PhLA...26..402F

Fröhlich H. The Biological Effects of Microwaves and Related Questions. Advances in Electronics and Electron Phys. 1980;53:85–152.

Šrobár, F.: An Equifinality Property of the Fröhlich Equations Describing Electromagnetic Activity of the Living Cells, in: Book of Abstracts of the XVIth Int. Symp. Bioelectrochem. Bioenerg., Bratislava, Slovakia, June 1–6, 2001, p. 167.

Šrobár F., Pokorný J. Topology of Mutual Relationship in the Fröhlich Model. Bioelectrochem. Bioenerg. 1996;41:31–33.

Šrobár F., Pokorný J. Causal Structure of the Fröhlich Model of Cellular Electromagnetic Activity. Electro- Magnetobiol. 1999;18:257–286.

Pokorný J., Jelínek F., Trkal V. Electric Field around Microtubules. Bioelectrochem, Bioenerg. 1998;45:239–245.

Pokorný J., Wu T.-M. Biophysical Aspects of Coherence and Biological Order. Praha; Springer, Berlin: Academia; 1998.

Pokorný J. Viscous Effects on Polar Vibrations in Microtubules. Electromagnetic Biol. Med. 2003;22:15–29.

Pokorný J. Excitation of Vibrations in Microtubules in Living Cells. Bioelectrochem. 2004;63:321–326. PubMed

Pohl H.A. Oscillating Fields about Growing Cells. Int. J. Quant. Chem. Quant. Biol. Symp. 1980;7:411–431.

Rowlands S., Sewchand L.S. Quantum Mechanical Interaction of Human Erythrocytes. Canad. J. Physiol. Pharmacol. 1982;60:52–59. PubMed

Albrecht-Buehler G.Rudimentary Form of Cellular ‘Vision’ Proc. Natl. Acad. Sci. U.S.A. 1992898288–8293.1992PNAS...89.8288A PubMed PMC

Del Giudice E., Doglia S., Milani M., Smith C.W., Vitiello G.Magnetic Flux Quantization and Josephson Behaviour in Living Systems Phys. Scr. 198940786–791.1989PhyS...40..786D

Hölzel R., Lamprecht I. Electromagnetic Field around Biological Cells. Neural Network World. 1994;4:327–337.

Pokorný J., Hašek J., Jelínek F., Šaroch J., Palán B. Electromagnetic Activity of Yeast Cells in the M Phase. Electro- Magnetobiol. 2001;20:371–396.

Pelling A.E., Sehati S., Gralla E.B., Valentine J.S., Gimzewski J.K. Local Nanomechanical Motion of the Cell Wall of. Saccharomyces cerevisiae, Science. 2004;305:1147–1150. PubMed

Lau, A.W.C., Hoffman, B.D., Davies, A., Crocker, J.C. and Lubensky, T.C.: Microrheology, Stress Fluctuations, and Active Behavior of Living Cells, Phys. Rev. Lett. 91 (2003), 198101-1–198101-4. PubMed

Caspi, A., Granek, R. and Elbaum, M.: Diffusion and Directed Motion in Cellular Transport, Phys. Rev. E66 (2002), 011916-1–011916-12. PubMed

Satarić M., Tuszyński J.A., Žakula R.B.Kinklike Excitations as an Energy Transfer Mechanism in Microtubules Phys. Rev. E 199348589–597.1993PhRvE..48..589S PubMed

Tuszyński J.A., Hameroff S., Satarić M.V., Trpisová B., Nip M.L.A. Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly. J. theor. Biol. 1995;174:371–380.

Tuszyński, J.A. and Brown, J.A.: Models of Dielectric and Conduction Properties of Microtubules. In: Abstract Book of Int. Symp. Electromagnetic Aspects of Selforganization in Biol., Prague, July 9–12, 2000, pp. 3–4.

Stracke R., Böhm K.J., Wollweber L., Tuszyński J.A., Unger E. Analysis of the Migration of Single Microtubules in Electric Fields. Biochem. Biophys. Res. Comm. 2002;293:602–609. doi: 10.1016/S0006-291X(02)00251-6. PubMed DOI

Caplow M., Ruhlen R.L., Shanks J. The Free Energy for Hydrolysis of a Microtubule-Bound Nucleotide Triphosphate Is Near Zero: All of the Free Energy for Hydrolysis Is Stored in the Microtubule Lattice. J. Cell Biol. 1994;127:779–788. doi: 10.1083/jcb.127.3.779. PubMed DOI PMC

Caplow M., Shanks J. Evidence that a Single Monolayer Tubulin-GTP Cap Is Both Necessary and Sufficient to Stabilize Microtubules. Molec. Biol. Cell. 1996;7:663–675. PubMed PMC

Papoulis A. Probability, Random Variables and Stochastic Processes. New York: McGraw Hill; 1965.

Denisov S., Klafter J., Urbakh M.Some New Aspects of Lévy Walks and Flights: Directed Transport, Manipulation Through Flights and Population Exchange Physica D 200418789–99.10.1016/j.physd.2003.09.0022004PhyD..187...89D20466931054.82023 DOI

Dekker A.J. Solid State Physics. Englewood Cliffs: Prentice-Hall; 1957.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Biophysical insights into cancer transformation and treatment

. 2013 ; 2013 () : 195028. [epub] 20130611

Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules

. 2011 Jun ; 40 (6) : 747-59. [epub] 20110311

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...