Purification, partial characterization, and covalent immobilization-stabilization of an extracellular α-amylase from Aspergillus niveus
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- alpha-Amylases isolation & purification metabolism MeSH
- Amylopectin metabolism MeSH
- Amylose metabolism MeSH
- Aspergillus enzymology MeSH
- Chromatography, Ion Exchange MeSH
- Chromatography, Thin Layer MeSH
- Electrophoresis, Polyacrylamide Gel MeSH
- Enzymes, Immobilized chemistry metabolism MeSH
- Chromatography, Gel MeSH
- Glycogen metabolism MeSH
- Hydrolysis MeSH
- Hydrogen-Ion Concentration MeSH
- Molecular Sequence Data MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Enzyme Stability MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- alpha-Amylases MeSH
- Amylopectin MeSH
- Amylose MeSH
- Enzymes, Immobilized MeSH
- Glycogen MeSH
An extracellular amylase secreted by Aspergillus niveus was purified using DEAE fractogel ion exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5 % polyacrylamide gel electrophoresis (PAGE) and 10 % sodium dodecyl sulfate (SDS-PAGE). The enzyme exhibited 4.5 % carbohydrate content, 6.6 isoelectric point, and 60 and 52 kDa molar mass estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The amylase efficiently hydrolyzed glycogen, amylose, and amylopectin. The end-products formed after 24 h of starch hydrolysis, analyzed by thin layer chromatography, were maltose, maltotriose, maltotetraose, and maltopentaose, which classified the studied amylase as an α-amylase. Thermal stability of the α-amylase was improved by covalent immobilization on glyoxyl agarose (half-life of 169 min, at 70 °C). On the other hand, the free α-amylase showed a half-life of 20 min at the same temperature. The optima of pH and temperature were 6.0 and 65 °C for both free and immobilized forms.
See more in PubMed
Biochem Mol Biol Int. 1995 May;36(1):185-93 PubMed
Cell. 1977 Dec;12(4):1133-41 PubMed
Prep Biochem Biotechnol. 2010;40(3):213-28 PubMed
Curr Microbiol. 1996 Sep;33(3):152-5 PubMed
Prog Biophys Mol Biol. 1997;67(1):67-97 PubMed
Bioprocess Biosyst Eng. 2009 Oct;32(6):819-24 PubMed
Ann N Y Acad Sci. 1964 Dec 28;121:404-27 PubMed
Biochem J. 1991 Dec 1;280 ( Pt 2):309-16 PubMed
Appl Microbiol Biotechnol. 2003 May;61(4):323-8 PubMed
Extremophiles. 2012 Jan;16(1):1-19 PubMed
Biotechnol Bioeng. 2006 Jun 20;94(3):431-40 PubMed
J Biotechnol. 2002 Mar 28;94(2):137-55 PubMed
J Biol Chem. 1951 Nov;193(1):265-75 PubMed
Biochim Biophys Acta. 2001 Mar 9;1546(1):1-20 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Microbiology (Reading). 2007 Dec;153(Pt 12):4003-4015 PubMed
J Basic Microbiol. 2004;44(1):29-35 PubMed
Antonie Van Leeuwenhoek. 2009 Nov;96(4):569-78 PubMed
Biotechnol Bioeng. 1993 Aug 5;42(4):455-64 PubMed
FEMS Microbiol Lett. 2004 Feb 16;231(2):165-9 PubMed
Zentralbl Mikrobiol. 1989;144(8):615-21 PubMed
Biochem J. 1932;26(5):1406-21 PubMed
J Ind Microbiol Biotechnol. 2009 Jan;36(1):149-55 PubMed
Folia Microbiol (Praha). 1994;39(5):392-8 PubMed
World J Microbiol Biotechnol. 1995 Mar;11(2):242-3 PubMed