Influence of in vitro IL-2 or IL-15 alone or in combination with Hsp-70-derived 14-mer peptide (TKD) on the expression of NK cell activatory and inhibitory receptors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
23476104
PubMed Central
PMC3588175
DOI
10.1155/2013/405295
Knihovny.cz E-zdroje
- MeSH
- buňky NK účinky léků metabolismus MeSH
- diferenciační antigeny T-lymfocytů metabolismus MeSH
- interleukin-15 farmakologie MeSH
- interleukin-2 farmakologie MeSH
- kultivované buňky MeSH
- lektinové receptory NK-buněk - podrodina B metabolismus MeSH
- lektinové receptory NK-buněk - podrodina C metabolismus MeSH
- lektinové receptory NK-buněk - podrodina K metabolismus MeSH
- leukocyty mononukleární účinky léků metabolismus MeSH
- lidé MeSH
- membránové glykoproteiny asociované s lyzozomy metabolismus MeSH
- peptidy chemie farmakologie MeSH
- proteiny tepelného šoku HSP70 chemie MeSH
- receptor 1 spouštějící přirozenou cytotoxicitu metabolismus MeSH
- receptor 2 spouštějící přirozenou cytotoxicitu metabolismus MeSH
- receptor 3 spouštějící přirozenou cytotoxicitu metabolismus MeSH
- receptory IgG metabolismus MeSH
- receptory KIR2DL2 MeSH
- receptory KIR2DL4 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diferenciační antigeny T-lymfocytů MeSH
- interleukin-15 MeSH
- interleukin-2 MeSH
- KIR2DL2 protein, human MeSH Prohlížeč
- KIR2DL4 protein, human MeSH Prohlížeč
- KLRB1 protein, human MeSH Prohlížeč
- KLRC2 protein, human MeSH Prohlížeč
- KLRK1 protein, human MeSH Prohlížeč
- LAMP1 protein, human MeSH Prohlížeč
- lektinové receptory NK-buněk - podrodina B MeSH
- lektinové receptory NK-buněk - podrodina C MeSH
- lektinové receptory NK-buněk - podrodina K MeSH
- membránové glykoproteiny asociované s lyzozomy MeSH
- NCR1 protein, human MeSH Prohlížeč
- NCR2 protein, human MeSH Prohlížeč
- NCR3 protein, human MeSH Prohlížeč
- peptidy MeSH
- proteiny tepelného šoku HSP70 MeSH
- receptor 1 spouštějící přirozenou cytotoxicitu MeSH
- receptor 2 spouštějící přirozenou cytotoxicitu MeSH
- receptor 3 spouštějící přirozenou cytotoxicitu MeSH
- receptory IgG MeSH
- receptory KIR2DL2 MeSH
- receptory KIR2DL4 MeSH
- T Lineage-Specific Activation Antigen 1 MeSH
NK cells represent a potential tool for adoptive immunotherapy against tumors. Membrane-bound Hsp70 acts as a tumor-specific marker enhancing NK cell activity. Using flow cytometry the effect of in vitro stimulation with IL-2 or IL-15 alone or in combination with Hsp70-derived 14-mer peptide (TKD) on cell surface expression of NK activatory receptors (CD16, NKG2D, NKG2C, NKp46, NKp44, NKp30, KIR2DL4, DNAM-1, and LAMP1) and NK inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2, and NKR-P1A) in healthy individuals was studied. Results were expressed as the percentage of receptor expressing cells and the amount of receptor expressed by CD3(-)CD56(+) cellular population. CD94, NKG2D, NKp44, NKp30, KIR2DL4, DNAM-1, LAMP1, NKG2A, and NKR-P1A were upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD. KIR2DL2/L3 was upregulated only by IL-15 and IL-15/TKD. Concurrently, an increase in a number of NK cells positive for CD94, NKp44, NKp30, KIR2DL4, and LAMP1 was observed. IL-15 and IL-15/TKD caused also cell number rise positive for KIR2DL2/L3 and NKR-P1A. Cell number positive for NKG2C and NKG2A was increased only by IL-2 and IL-2/TKD. The diverse effect of IL-2 or IL-15 w or w/o TKD on cell surface expression was observed in CD16, NKp46, and LIR1/ILT-2.
Zobrazit více v PubMed
Volloch VZ, Sherman MY. Oncogenic potential of Hsp72. Oncogene. 1999;18(24):3648–3651. PubMed
Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. Journal of Immunology. 1997;158(9):4341–4350. PubMed
Botzler C, Ellwart J, Günther W, Eißner G, Multhoff G. Synergistic effects of heat and ET-18-OCH3 on membrane expression of hsp70 and lysis of leukemic K562 cells. Experimental Hematology. 1999;27(3):470–478. PubMed
Gastpar R, Gross C, Rossbacher L, Ellwart J, Riegger J, Multhoff G. The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. Journal of Immunology. 2004;172(2):972–980. PubMed
Stangl S, Wortmann A, Guertler U, Multhoff G. Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells. Journal of Immunology. 2006;176(10):6270–6276. PubMed
Krause SW, Gastpar R, Andreesen R, et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clinical Cancer Research. 2004;10(11):3699–3707. PubMed
Milani V, Stangl S, Issels R, et al. Anti-tumor activity of patient-derived NK cells after cell-based immunotherapy: a case report. Journal of Translational Medicine. 2009;23(7, article 50) PubMed PMC
Topalian SL, Rosenberg SA. Therapy of cancer using the adoptive transfer of activated killer cells and interleukin-2. Acta Haematologica. 1987;78(1):75–76. PubMed
Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nature Immunology. 2008;9(5):495–502. PubMed PMC
Malhotra A, Shanker A. NK cells: immune cross-talk and therapeutic implications. Immunotherapy. 2011;3(10):1143–1166. PubMed PMC
Stangl S, Gross C, Pockley AG, Asea AA, Multhoff G. Influence of Hsp70 and HLA-E on the killing of leukemic blasts by cytokine/Hsp70 peptide-activated human natural killer (NK) cells. Cell Stress and Chaperones. 2008;13(2):221–230. PubMed PMC
Chrul S, Polakowska E, Szadkowska A, Bodalski J. Influence of interleukin IL-2 and IL-12 + IL-18 on surface expression of immunoglobulin-like receptors KIR2DL1, KIR2DL2, and KIR3DL2 in natural killer cells. Mediators of Inflammation. 2006;2006:6 pages.46957 PubMed PMC
Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE. The CD94/NKG2 family of receptors. Immunologic Research. 2006;35(3):263–277. PubMed
Azzoni L, Zatsepina O, Abebe B, Bennett IM, Kanakaraj P, Perussia B. Differential transcriptional regulation of CD161 and a novel gene, 197/15a, by IL-2, IL-15, and IL-12 in NK and T cells. Journal of Immunology. 1998;161(7):3493–3500. PubMed
Johnston JA, Kawamura M, Kirken RA, et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature. 1994;370(6485):151–153. PubMed
Hou J, Schindler U, Henzel WJ, Wong SC, McKnight SI. Identification and purification of human stat proteins activated in response to interleukin-2. Immunity. 1995;2(4):321–329. PubMed
Witthuhn BA, Silvennoinen O, Miura O, et al. Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature. 1994;370(6485):153–157. PubMed
Schindler U, Wu P, Rothe M, Brasseur M, McKnight SL. Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity. 1995;2(6):689–697. PubMed
Ravetch JV, Perussia B. Alternative membrane forms of FcγRIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. Journal of Experimental Medicine. 1989;170(2):481–497. PubMed PMC
van Sorge NM, van der Pol WL, van de Winkel JGJ. FcγR polymorphisms: implications for function, disease susceptibility and immunotherapy. Tissue Antigens. 2003;61(3):189–202. PubMed
Tridandapani S, Wardrop R, Baran CP, et al. TGF-β1 supresses myeloid Fcγ receptor function by regulating the expression and function of the common γ-subunit. Journal of Immunology. 2003;170(9):4572–4577. PubMed
Cecchetti S, Spadaro F, Lugini L, Podo F, Ramoni C. Functional role of phosphatidylcholine-specific phospholipase C in regulating CD16 membrane expression in natural killer cells. European Journal of Immunology. 2007;37(10):2912–2922. PubMed
Davidson CL, Li NL, Burshtyn DN. LILRB1 polymorphism and surface phenotypes of natural killer cells. Human Immunology. 2010;71(10):942–949. PubMed
Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science. 1994;265(5178):1573–1577. PubMed
Courey AJ, Holtzman DA, Jackson SP, Tjian R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell. 1989;59(5):827–836. PubMed
Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984;308(5961):693–698. PubMed
Takai Y, Kishimoto A, Iwasa Y, Kawahara Y, Mori T, Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. Journal of Biological Chemistry. 1979;254(10):3692–3695. PubMed
Kazanietz MG, Barchi JJ, Jr., Omichinski JG, Blumberg PM. Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids. Journal of Biological Chemistry. 1995;270(24):14679–14684. PubMed
Chwae YJ, Lee JM, Kim EJ, Lee ST, Soh JW, Kim J. Activation-induced upregulation of inhibitory killer Ig-like receptors is regulated by protein kinase C. Immunology and Cell Biology. 2007;85(3):220–228. PubMed
Chwae YJ, Lee JM, Kim HR, et al. Amino-acid sequence motifs for PKC-mediated membrane trafficking of the inhibitory killer Ig-like receptor. Immunology and Cell Biology. 2008;86(4):372–380. PubMed
Moretta L, Moretta A. Killer immunoglobulin-like receptors. Current Opinion in Immunology. 2004;16(5):626–633. PubMed
Nakajima H, Asai A, Okada A, et al. Transcriptional regulation of ILT family receptors. Journal of Immunology. 2003;171(12):6611–6620. PubMed
Santourlidis S, Trompeter HI, Weinhold S, et al. Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. Journal of Immunology. 2002;169(8):4253–4261. PubMed
Chan H-W, Kurago ZB, Stewart CA, et al. DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. Journal of Experimental Medicine. 2003;197(2):245–255. PubMed PMC
Kikuchi-Maki A, Yusa SI, Catina TL, Campbell KS. KIR2DL4 is an IL-2-regulated NK cell receptor that exhibits limited expression in humans but triggers strong IFN-γ production. Journal of Immunology. 2003;171(7):3415–3425. PubMed
Goodridge JP, Witt CS, Christiansen FT, Warren HS. KIR2DL4 (CD158d) genotype influences expression and function in NK cells. Journal of Immunology. 2003;171(4):1768–1774. PubMed
Kim HR, Chwae YJ, Kim J. Identification of the amino acid sequence motif for conventional PKC-mediated regulation of NKp46 surface expression. Scandinavian Journal of Immunology. 2010;71(6):413–419. PubMed
Kim HR, Lee KH, Park SJ, et al. Anti-cancer activity and mechanistic features of a NK cell activating molecule. Cancer Immunology, Immunotherapy. 2009;58(10):1691–1700. PubMed PMC
Vitale C, Chiossone L, Cantoni C, et al. The corticosteroid-induced inhibitory effect on NK cell function reflects down-regulation and/or dysfunction of triggering receptors involved in natural cytotoxicity. European Journal of Immunology. 2004;34(11):3028–3038. PubMed
Mavoungou E, Bouyou-Akotet MK, Kremsner PG. Effects of prolactin and cortisol on natural killer (NK) cell surface expression and function of human natural cytotoxicity receptors (NKp46, NKp44 and NKp30) Clinical and Experimental Immunology. 2005;139(2):287–296. PubMed PMC
Sivori S, Vitale M, Morelli L, et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. Journal of Experimental Medicine. 1997;186(7):1129–1136. PubMed PMC
Pende D, Parolini S, Pessino A, et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. Journal of Experimental Medicine. 1999;190(10):1505–1516. PubMed PMC
Renedo M, Arce I, Rodríguez A, et al. The human natural killer gene complex is located on chromosome 12p12-p13. Immunogenetics. 1997;46(4):307–311. PubMed
Renedo M, Arce I, Montgomery K, et al. A sequence-ready physical map of the region containing human natural killer gene complex on chromosome 12p12.3-p13.2. Genomics. 2000;65(2):129–136. PubMed
Lanier LL, Chang C, Phillips JH. Human NKR-P1A: a disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. Journal of Immunology. 1994;153(6):2417–2428. PubMed
Zafirova B, Wensveen FM, Gulin M, Polić B. Regulation of immune cell function and differentiation by the NKG2D receptor. Cellular and Molecular Life Sciences. 2011;68(21):3519–3529. PubMed PMC
Huntington ND, Vosshenrich CAJ, Di Santo JP. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nature Reviews Immunology. 2007;7(9):703–714. PubMed
Yokoyama WM, Kim S, French AR. The dynamic life of natural killer cells. Annual Review of Immunology. 2004;22:405–429. PubMed
Disanto JP, Müller W, Guy-Grand D, Fischer A, Rajewsky K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor γ chain. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(2):377–381. PubMed PMC
Huntington ND, Puthalakath H, Gunn P, et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nature Immunology. 2007;8(8):856–863. PubMed PMC
Horng T, Bezbradica JS, Medzhitov R. NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nature Immunology. 2007;8(12):1345–1352. PubMed
Jiang K, Zhong B, Gilvary DL, et al. Syk regulation of phosphoinositide 3-kinase-dependent NK cell function. Journal of Immunology. 2002;168(7):3155–3164. PubMed
Jiang K, Zhong B, Ritchey C, et al. Regulation of Akt-dependent cell survival by Syk and Rac. Blood. 2003;101(1):236–244. PubMed
Decot V, Voillard L, Latger-Cannard V, et al. Natural-killer cell amplification for adoptive leukemia relapse immunotherapy: comparison of three cytokines, IL-2, IL-15, or IL-7 and impact on NKG2D, KIR2DL1, and KIR2DL2 expression. Experimental Hematology. 2010;38(5):351–362. PubMed
Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, Parsa AT. TGF-β downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro-Oncology. 2010;12(1):7–13. PubMed PMC
Fernández-Sánchez A, Baragaño Raneros A, Carvajal Palao R, et al. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8 (+) T and NK cells. Epigenetics. 2012;8(1):66–78. PubMed PMC
Lieto LD, Borrego F, You CH, Coligan JE. Human CD94 gene expression: dual promoters differing in responsiveness to IL-2 or IL-15. Journal of Immunology. 2003;171(10):5277–5286. PubMed
Rodríguez A, Carretero M, Glienke J, et al. Structure of the human CD94 C-type lectin gene. Immunogenetics. 1998;47(4):305–309. PubMed
Marusina AI, Kim DK, Lieto LD, Borrego F, Coligan JE. GATA-3 is an important transcription factor for regulating human NKG2A gene expression. Journal of Immunology. 2005;174(4):2152–2159. PubMed
Brady J, Hayakawa Y, Smyth MJ, Nutt SL. IL-21 induces the functional maturation of murine NK cells. Journal of Immunology. 2004;172(4):2152–2159. PubMed
Miller JS, McCullar V. Human natural killer cells with polyclonal lectin and immunoglobulinlike receptors develop from single hematopoietic stem cells with preferential expression of NKG2A and KIR2DL2/L3/S2. Blood. 2001;98(3):705–713. PubMed
Mingari MC, Vitale C, Cantoni C, et al. Interleukin-15-induced maturation of human natural killer cells from early thymic precursors: selective expression of CD94/NKG2-A as the only HLA class I-specific inhibitory receptor. European Journal of Immunology. 1997;27(6):1374–1380. PubMed
Mori S, Jewett A, Cavalcanti M, Murakami-Mori K, Nakamura S, Bonavida B. Differential regulation of human NK cell-associated gene expression following activation by IL-2, IFN-Xα and PMA/ionomycin. International Journal of Oncology. 1998;12(5):1165–1170. PubMed
Sáez-Borderías A, Romo N, Magri G, Gumá M, Angulo A, López-Botet M. IL-12-dependent inducible expression of the CD94/NKG2A inhibitory receptor regulates CD94/NKG2C+ NK cell function. Journal of Immunology. 2009;182(2):829–836. PubMed
Jabri B, Selby JM, Negulescu H, et al. TCR specificity dictates CD94/NKG2A expression by human CTL. Immunity. 2002;17(4):487–499. PubMed
Brostjan C, Bellón T, Sobanov Y, López-Botet M, Hofer E. Differential expression of inhibitory and activating CD94/NKG2 receptors on NK cell clones. Journal of Immunological Methods. 2002;264(1-2):109–119. PubMed
Kusumi M, Yamashita T, Fujii T, Nagamatsu T, Kozuma S, Taketani Y. Expression patterns of lectin-like natural killer receptors, inhibitory CD94/NKG2A, and activating CD94/NKG2C on decidual CD56bright natural killer cells differ from those on peripheral CD56dim natural killer cells. Journal of Reproductive Immunology. 2006;70(1-2):33–42. PubMed
Pozo D, Valés-Gómez M, Mavaddat N, Williamson SC, Chisholm SE, Reyburn H. CD161 (human NKR-P1A) signaling in NK cells involves the activation of acid sphingomyelinase. Journal of Immunology. 2006;176(4):2397–2406. PubMed
Shibuya A, Campbell D, Hannum C, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity. 2006;4(6):573–581. PubMed
Jian JL, Zhu CS, Xu ZW, et al. Identification and characterization of the CD226 gene promoter. Journal of Biological Chemistry. 2006;281(39):28731–28736. PubMed
Ksienzyk A, Neumann B, Nandakumar R, et al. IRF-1 expression is essential for natural killer cells to suppress metastasis. Cancer Research. 2011;71(20):6410–6418. PubMed
Löfgren SE, Delgado-Vega AM, Gallant CJ, et al. A 3′-untranslated region variant is associated with impaired expression of CD226 in T and natural killer T cells and is associated with susceptibility to systemic lupus erythematosus. Arthritis & Rheumatism. 2010;62(11):3404–3414. PubMed
Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. Journal of Immunological Methods. 2004;294(1-2):15–22. PubMed
Aktas E, Kucuksezer UC, Bilgic S, Erten G, Deniz G. Relationship between CD107a expression and cytotoxic activity. Cellular Immunology. 2009;254(2):149–154. PubMed