Establishment of an efficient RNA silencing system in Trichoderma koningii using DsRed as a reporter
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Fluorescence MeSH
- Gene Knockdown Techniques methods MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Luminescent Proteins analysis genetics MeSH
- RNA, Small Interfering genetics MeSH
- Genetics, Microbial methods MeSH
- Recombination, Genetic MeSH
- Genes, Reporter MeSH
- RNA Interference * MeSH
- Gene Expression Profiling MeSH
- Transformation, Genetic MeSH
- Trichoderma genetics MeSH
- Blotting, Western MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- fluorescent protein 583 MeSH Browser
- Luminescent Proteins MeSH
- RNA, Small Interfering MeSH
We aimed to establish an efficient RNA interference (RNAi) system in the industrially important filamentous fungus Trichoderma koningii using the DsRed protein as a reporter of the silencing process. To accomplish this, a DsRed expression cassette was transformed into T. koningii, and a recombinant strain that stably expressed DsRed was obtained. Next, a vector-directing expression of a DsRed hairpin RNA was constructed and transformed into the T. koningii recipient strain. Approximately 79 % of transformants displayed a decrease in DsRed fluorescence, and expression of DsRed in some transformants appeared to be fully suppressed. Characterization of randomly selected transformants by genomic DNA PCR analysis, real-time PCR quantification, and western blot confirmed downregulation of gene expression at different levels. The RNA silencing approach described here for T. koningii is effective, and the DsRed reporter gene provides a convenient tool for identification of silenced fungal transformants by their DsRed fluorescence compared to the control strain. The results of this study demonstrate the power of RNAi in T. koningii, which supports the use of this technology for strain development programs and functional genomics studies in industrial fungal strains.
See more in PubMed
Appl Environ Microbiol. 1997 Apr;63(4):1298-306 PubMed
Eukaryot Cell. 2009 May;8(5):800-4 PubMed
Mol Cell. 2002 Dec;10(6):1417-27 PubMed
Nat Genet. 2005 Jun;37 Suppl:S25-30 PubMed
Cell. 2001 Nov 16;107(4):465-76 PubMed
Gene. 1987;61(2):155-64 PubMed
Nat Methods. 2006 May;3(5):385-90 PubMed
Arch Microbiol. 2009 Jul;191(7):615-22 PubMed
Mol Microbiol. 2004 Feb;51(4):1015-25 PubMed
Mol Plant Microbe Interact. 2003 Sep;16(9):769-76 PubMed
Fungal Genet Biol. 2005 Jan;42(1):9-19 PubMed
Appl Microbiol Biotechnol. 2011 Feb;89(3):501-12 PubMed
J Struct Biol. 2010 Apr;170(1):1-9 PubMed
Appl Microbiol Biotechnol. 2010 Mar;86(1):51-62 PubMed
Appl Environ Microbiol. 2007 Feb;73(3):962-70 PubMed
Cell Mol Life Sci. 2010 Nov;67(22):3849-63 PubMed
Fungal Genet Biol. 2005 Apr;42(4):275-83 PubMed
Nucleic Acids Res. 2010 Sep;38(16):5535-41 PubMed
Biotechnol Adv. 2008 Mar-Apr;26(2):177-85 PubMed
Eukaryot Cell. 2008 Nov;7(11):2004-7 PubMed
J Appl Microbiol. 2002;92(2):189-95 PubMed
Acc Chem Res. 2012 Jul 17;45(7):1122-31 PubMed
Nature. 2009 Jan 22;457(7228):396-404 PubMed
Nature. 1998 Feb 19;391(6669):806-11 PubMed
FEMS Microbiol Lett. 2003 Jun 6;223(1):135-9 PubMed