Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxidized low density lipoprotein uptake by macrophages
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
DK033301
NIDDK NIH HHS - United States
R01 DK060022
NIDDK NIH HHS - United States
P30 DK056341
NIDDK NIH HHS - United States
R01 DK033301
NIDDK NIH HHS - United States
DK60022
NIDDK NIH HHS - United States
P01 HL057278
NHLBI NIH HHS - United States
PubMed
23603908
PubMed Central
PMC3668716
DOI
10.1074/jbc.m113.473298
PII: S0021-9258(20)45946-0
Knihovny.cz E-zdroje
- Klíčová slova
- CD36, Fatty Acid, Fatty Acid Uptake, Glycerophospholipid, Lipid Transport, Lipids, Metabolic Regulation, SSO,
- MeSH
- antigeny CD36 genetika metabolismus MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- endoplazmatické retikulum genetika metabolismus MeSH
- křečci praví MeSH
- kyseliny olejové metabolismus farmakologie MeSH
- lidé MeSH
- lipoproteiny LDL genetika metabolismus MeSH
- sukcinimidy metabolismus farmakologie MeSH
- terciární struktura proteinů MeSH
- vápníková signalizace účinky léků fyziologie MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antigeny CD36 MeSH
- kyseliny olejové MeSH
- lipoproteiny LDL MeSH
- oxidized low density lipoprotein MeSH Prohlížeč
- sukcinimidy MeSH
- sulfo-N-succinimidyl oleate MeSH Prohlížeč
FAT/CD36 is a multifunctional glycoprotein that facilitates long-chain fatty acid (FA) uptake by cardiomyocytes and adipocytes and uptake of oxidized low density lipoproteins (oxLDL) by macrophages. CD36 also mediates FA-induced signaling to increase intracellular calcium in various cell types. The membrane-impermeable sulfo-N-hydroxysuccinimidyl (NHS) ester of oleate (SSO) irreversibly binds CD36 and has been widely used to inhibit CD36-dependent FA uptake and signaling to calcium. The inhibition mechanism and whether SSO modification of CD36 involves the FA-binding site remain unexplored. CHO cells expressing human CD36 were SSO-treated, and the protein was pulled down, deglycosylated, and resolved by electrophoresis. The CD36 band was extracted from the gel and digested for analysis by mass spectrometry. NHS derivatives react with primary or secondary amines on proteins to yield stable amide or imide bonds. Two oleoylated peptides, found only in SSO-treated samples, were identified with high contribution and confidence scores as carrying oleate modification of Lys-164. Lysine 164 lies within a predicted CD36 binding domain for FA and oxLDL. CHO cells expressing CD36 with mutated Lys-164 had impaired CD36 function in FA uptake and FA-induced calcium release from the endoplasmic reticulum, supporting the importance of Lys-164 for both FA effects. Furthermore, consistent with the importance of Lys-164 for oxLDL binding, SSO inhibited oxLDL uptake by macrophages. In conclusion, SSO accesses Lys-164 in the FA-binding site on CD36, and initial modeling of this site is presented. The data suggest competition between FA and oxLDL for access to the CD36 binding pocket.
Zobrazit více v PubMed
Coburn C. T., Abumrad N. A. (2004) in Cellular Proteins and Their Fatty Acids in Health and Disease (Duttaroy A. K., Spener F., eds) pp. 3–29, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany
Glatz J. F., Luiken J. J., Bonen A. (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol. Rev. 90, 367–417 PubMed
Hirano K., Kuwasako T., Nakagawa-Toyama Y., Janabi M., Yamashita S., Matsuzawa Y. (2003) Pathophysiology of human genetic CD36 deficiency. Trends Cardiovasc. Med. 13, 136–141 PubMed
Koutsari C., Ali A. H., Mundi M. S., Jensen M. D. (2011) Storage of circulating free fatty acid in adipose tissue of postabsorptive humans: quantitative measures and implications for body fat distribution. Diabetes 60, 2032–2040 PubMed PMC
Koutsari C., Mundi M. S., Ali A. H., Jensen M. D. (2012) Storage rates of circulating free fatty acid into adipose tissue during eating or walking in humans. Diabetes 61, 329–338 PubMed PMC
Kar N. S., Ashraf M. Z., Valiyaveettil M., Podrez E. A. (2008) Mapping and characterization of the binding site for specific oxidized phospholipids and oxidized low density lipoprotein of scavenger receptor CD36. J. Biol. Chem. 283, 8765–8771 PubMed PMC
Endemann G., Stanton L. W., Madden K. S., Bryant C. M., White R. T., Protter A. A. (1993) Cd36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268, 11811–11816 PubMed
Asch A. S., Liu I., Briccetti F. M., Barnwell J. W., Kwakye-Berko F., Dokun A., Goldberger J., Pernambuco M. (1993) Analysis of CD36 binding domains: ligand specificity controlled by dephosphorylation of an ectodomain. Science 262, 1436–1440 PubMed
Demers A., McNicoll N., Febbraio M., Servant M., Marleau S., Silverstein R., Ong H. (2004) Identification of the growth hormone-releasing peptide binding site in CD36: a photoaffinity cross-linking study. Biochem. J. 382, 417–424 PubMed PMC
Navazo M. D., Daviet L., Savill J., Ren Y., Leung L. L., McGregor J. L. (1996) Identification of a domain (155–183) on CD36 implicated in the phagocytosis of apoptotic neutrophils. J. Biol. Chem. 271, 15381–15385 PubMed
Barnwell J. W., Asch A. S., Nachman R. L., Yamaya M., Aikawa M., Ingravallo P. (1989) A human 88-kDa membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J. Clin. Invest. 84, 765–772 PubMed PMC
Febbraio M., Hajjar D. P., Silverstein R. L. (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791 PubMed PMC
Kuda O., Jenkins C. M., Skinner J. R., Moon S. H., Su X., Gross R. W., Abumrad N. A. (2011) CD36 protein is involved in store-operated calcium flux, phospholipase A2 activation, and production of prostaglandin E2. J. Biol. Chem. 286, 17785–17795 PubMed PMC
Dramane G., Abdoul-Azize S., Hichami A., Vögtle T., Akpona S., Chouabe C., Sadou H., Nieswandt B., Besnard P., Khan N. A. (2012) STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice. J. Clin. Invest. 122, 2267–2282 PubMed PMC
El-Yassimi A., Hichami A., Besnard P., Khan N. A. (2008) Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J. Biol. Chem. 283, 12949–12959 PubMed
Sundaresan S., Shahid R., Riehl T. E., Chandra R., Nassir F., Stenson W. F., Liddle R. A., Abumrad N. A. (2013) CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J. 27, 1191–1202 PubMed PMC
Pepino M. Y., Love-Gregory L., Klein S., Abumrad N. A. (2012) The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J. Lipid Res. 53, 561–566 PubMed PMC
Love-Gregory L., Sherva R., Sun L., Wasson J., Schappe T., Doria A., Rao D. C., Hunt S. C., Klein S., Neuman R. J., Permutt M. A., Abumrad N. A. (2008) Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum. Mol. Genet. 17, 1695–1704 PubMed PMC
Ghosh A., Murugesan G., Chen K., Zhang L., Wang Q., Febbraio M., Anselmo R. M., Marchant K., Barnard J., Silverstein R. L. (2011) Platelet CD36 surface expression levels affect functional responses to oxidized LDL and are associated with inheritance of specific genetic polymorphisms. Blood 117, 6355–6366 PubMed PMC
Love-Gregory L., Abumrad N. A. (2011) CD36 genetics and the metabolic complications of obesity. Curr. Opin. Clin. Nutr. Metab. Care 14, 527–534 PubMed PMC
Baillie A. G., Coburn C. T., Abumrad N. A. (1996) Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J. Membr. Biol. 153, 75–81 PubMed
Huang M. M., Bolen J. B., Barnwell J. W., Shattil S. J., Brugge J. S. (1991) Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc. Natl. Acad. Sci. U.S.A. 88, 7844–7848 PubMed PMC
Silverstein R. L., Febbraio M. (2009) CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal. 2, re3. PubMed PMC
Su X., Abumrad N. A. (2009) Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol. Metab. 20, 72–77 PubMed PMC
Abumrad N. A., Davidson N. O. (2012) Role of the gut in lipid homeostasis. Physiol. Rev. 92, 1061–1085 PubMed PMC
Harmon C. M., Abumrad N. A. (1993) Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kDa protein implicated in transport of long-chain fatty acids. J. Membr. Biol. 133, 43–49 PubMed
Coort S. L., Willems J., Coumans W. A., van der Vusse G. J., Bonen A., Glatz J. F., Luiken J. J. (2002) Sulfo-N-succinimidyl esters of long chain fatty acids specifically inhibit fatty acid translocase (FAT/CD36)-mediated cellular fatty acid uptake. Mol. Cell. Biochem. 239, 213–219 PubMed
Kerkhoff C., Sorg C., Tandon N. N., Nacken W. (2001) Interaction of S100A8/S100A9-arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells. Biochemistry 40, 241–248 PubMed
Pohl J., Ring A., Korkmaz U., Ehehalt R., Stremmel W. (2005) FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts. Mol. Biol. Cell 16, 24–31 PubMed PMC
Nicholls H. T., Kowalski G., Kennedy D. J., Risis S., Zaffino L. A., Watson N., Kanellakis P., Watt M. J., Bobik A., Bonen A., Febbraio M., Lancaster G. I., Febbraio M. A. (2011) Hematopoietic cell-restricted deletion of CD36 reduces high-fat diet-induced macrophage infiltration and improves insulin signaling in adipose tissue. Diabetes 60, 1100–1110 PubMed PMC
Naville D., Duchampt A., Vigier M., Oursel D., Lessire R., Poirier H., Niot I., Bégeot M., Besnard P., Mithieux G. (2012) Link between intestinal CD36 ligand binding and satiety induced by a high protein diet in mice. PloS One 7, e30686. PubMed PMC
Le Foll C., Irani B. G., Magnan C., Dunn-Meynell A. A., Levin B. E. (2009) Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R655–R664 PubMed PMC
Geffen I., Wessels H. P., Roth J., Shia M. A., Spiess M. (1989) Endocytosis and recycling of subunit-H1 of the asialoglycoprotein receptor is independent of oligomerization with H2. EMBO J. 8, 2855–2861 PubMed PMC
Hare J. F., Taylor K. (1991) Mechanisms of plasma-membrane protein-degradation-recycling proteins are degraded more rapidly than those confined to the cell-surface. Proc. Natl. Acad. Sci. U.S.A. 88, 5902–5906 PubMed PMC
Kalkhof S., Sinz A. (2008) Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Anal. Bioanal. Chem. 392, 305–312 PubMed
Harmon C. M., Luce P., Beth A. H., Abumrad N. A. (1991) Labeling of adipocyte membranes by sulfo-N-succinimidyl derivatives of long-chain fatty acids: inhibition of fatty acid transport. J. Membr. Biol. 121, 261–268 PubMed
Smith J., Su X., El-Maghrabi R., Stahl P. D., Abumrad N. A. (2008) Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake. J. Biol. Chem. 283, 13578–13585 PubMed PMC
Shilov I. V., Seymour S. L., Patel A. A., Loboda A., Tang W. H., Keating S. P., Hunter C. L., Nuwaysir L. M., Schaeffer D. A. (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol. Cell. Proteomics 6, 1638–1655 PubMed
Strohalm M., Kavan D., Novák P., Volný M., Havlícek V. (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 82, 4648–4651 PubMed
Roy A., Kucukural A., Zhang Y. (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 PubMed PMC
Lundby A., Lage K., Weinert B. T., Bekker-Jensen D. B., Secher A., Skovgaard T., Kelstrup C. D., Dmytriyev A., Choudhary C., Lundby C., Olsen J. V. (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep. 2, 419–431 PubMed PMC
Gros J., Gerhardt C. C., Strosberg A. D. (1999) Expression of human β3-adrenergic receptor induces adipocyte-like features in CHO/K1 fibroblasts. J. Cell Sci. 112, 3791–3797 PubMed
Listenberger L. L., Han X., Lewis S. E., Cases S., Farese R. V., Jr., Ory D. S., Schaffer J. E. (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. U.S.A. 100, 3077–3082 PubMed PMC
Kennedy D. J., Kuchibhotla S., Westfall K. M., Silverstein R. L., Morton R. E., Febbraio M. (2011) A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovasc. Res. 89, 604–613 PubMed PMC
Riquelme C. A., Magida J. A., Harrison B. C., Wall C. E., Marr T. G., Secor S. M., Leinwand L. A. (2011) Fatty acids identified in the Burmese python promote beneficial cardiac growth. Science 334, 528–531 PubMed PMC
Huang B. X., Dass C., Kim H. Y. (2005) Probing conformational changes of human serum albumin due to unsaturated fatty acid binding by chemical cross-linking and mass spectrometry. Biochem. J. 387, 695–702 PubMed PMC
Reed R. G. (1986) Location of long chain fatty acid-binding sites of bovine serum albumin by affinity labeling. J. Biol. Chem. 261, 15619–15624 PubMed
Falomir-Lockhart L. J., Laborde L., Kahn P. C., Storch J., Córsico B. (2006) Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process. J. Biol. Chem. 281, 13979–13989 PubMed
Storch J., McDermott L. (2009) Structural and functional analysis of fatty acid-binding proteins. J. Lipid Res. 50, S126–S131 PubMed PMC
Xiong Y., Guan K. L. (2012) Mechanistic insights into the regulation of metabolic enzymes by acetylation. J. Cell Biol. 198, 155–164 PubMed PMC
Gao D., Ashraf M. Z., Kar N. S., Lin D., Sayre L. M., Podrez E. A. (2010) Structural basis for the recognition of oxidized phospholipids in oxidized low density lipoproteins by class B scavenger receptors CD36 and SR-BI. J. Biol. Chem. 285, 4447–4454 PubMed PMC
Nicholson A. C., Frieda S., Pearce A., Silverstein R. L. (1995) Oxidized Ldl binds to Cd36 on human monocyte-derived macrophages and transfected cell lines–Evidence implicating the lipid moiety of the lipoprotein as the binding site. Arterioscler. Thromb. Vasc. Biol. 15, 269–275 PubMed
Hoosdally S. J., Andress E. J., Wooding C., Martin C. A., Linton K. J. (2009) The human scavenger receptor CD36: Glycosylation status and its role in trafficking and function. J. Biol. Chem. 284, 16277–16288 PubMed PMC
Berglund L., Petersen T. E., Rasmussen J. T. (1996) Structural characterization of bovine CD36 from the milk fat globule membrane. Biochim. Biophys. Acta 1309, 63–68 PubMed
Rasmussen J. T., Berglund L., Rasmussen M. S., Petersen T. E. (1998) Assignment of disulfide bridges in bovine CD36. Eur. J. Biochem. 257, 488–494 PubMed
Tao N., Wagner S. J., Lublin D. M. (1996) CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails. J. Biol. Chem. 271, 22315–22320 PubMed
Wagner S. A., Beli P., Weinert B. T., Schölz C., Kelstrup C. D., Young C., Nielsen M. L., Olsen J. V., Brakebusch C., Choudhary C. (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol. Cell. Proteomics 11, 1578–1585 PubMed PMC