How ionic strength affects the conformational behavior of human and rat beta amyloids--a computational study
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23717395
PubMed Central
PMC3662769
DOI
10.1371/journal.pone.0062914
PII: PONE-D-12-38166
Knihovny.cz E-zdroje
- MeSH
- amyloidní beta-protein chemie MeSH
- chlorid sodný chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- osmolární koncentrace MeSH
- peptidové fragmenty chemie MeSH
- povrchové vlastnosti MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky * MeSH
- stabilita proteinů MeSH
- terciární struktura proteinů MeSH
- voda chemie MeSH
- vodíková vazba MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amyloid beta-protein (1-42) MeSH Prohlížeč
- amyloidní beta-protein MeSH
- chlorid sodný MeSH
- peptidové fragmenty MeSH
- voda MeSH
Progressive cerebral deposition of amyloid beta occurs in Alzheimers disease and during the aging of certain mammals (human, monkey, dog, bear, cow, cat) but not others (rat, mouse). It is possibly due to different amino acid sequences at positions 5, 10 and 13. To address this issue, we performed series of 100 ns long trajectories (each trajectory was run twice with different initial velocity distribution) on amyloid beta (1-42) with the human and rat amino acid sequence in three different environments: water with only counter ions, water with NaCl at a concentration of 0.15 M as a model of intracellular Na(+) concentration at steady state, and water with NaCl at a concentration of 0.30 M as a model of intracellular Na(+) concentration under stimulated conditions. We analyzed secondary structure stability, internal hydrogen bonds, and residual fluctuation. It was observed that the change in ionic strength affects the stability of internal hydrogen bonds. Increasing the ionic strength increases atomic fluctuation in the hydrophobic core of the human amyloid, and decreases the atomic fluctuation in the case of rat amyloid. The secondary structure analyses show a stable α-helix part between residues 10 and 20. However, C-terminus of investigated amyloids is much more flexible showing no stable secondary structure elements. Increasing ionic strength of the solvent leads to decreasing stability of the secondary structural elements. The difference in conformational behavior of the three amino acids at position 5, 10 and 13 for human and rat amyloids significantly changes the conformational behavior of the whole peptide.
Zobrazit více v PubMed
Ausiello DA, Benos DJ, Abboud F, Koopman W, Epstein P (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann. Intern. Med. 140: 627–638. PubMed
Braak H, Braak E (1994) Morphological criteria for the recognition of Alzheimer's disease and the distribution pattern of cortical changes related to this disorder. Neurobiol. Aging 15: 355–356. PubMed
Wirths O, Multhaup G, Bayer TA (2004) A modified β-amyloid hypothesis: intraneuronal accumulation of the β-amyloid peptide – the first step of a fatal cascade. J. Neurochem. 91: 513–520. PubMed
Rauk A (2008) Why is the amyloid beta peptide of Alzheimer's disease neurotoxic? Dalton Trans: 1273–1282. PubMed
Tjernberg LO, Näslund J, Lindqvist F, Johansson J, Karlström AR, et al. (1996) Arrest of -Amyloid Fibril Formation by a Pentapeptide Ligand. J. Biol. Chem. 271: 8545–8548. PubMed
Tjernberg LO, Lilliehöök C, Callaway DJE, Näslund J, Hahne S, et al. (1997) Controlling Amyloid β-Peptide Fibril Formation with Protease-stable Ligands. J. Biol. Chem. 272: 12601–12605. PubMed
Yao Z-X, Papadopoulos V (2002) Function of ß-amyloid in cholesterol transport: a lead to neurotoxicity. FASEB J. 16: 1677–1679. PubMed
Sadowski MJ, Pankiewicz J, Scholtzova H, Mehta PD, Prelli F, et al. (2006) Blocking the apolipoprotein E/amyloid-β interaction as a potential therapeutic approach for Alzheimer's disease. P NAS 103: 18787–18792. PubMed PMC
Wang H, Lee DHS, Davis CB, Shank RP (2000) Amyloid Peptide Aβ1-42 Binds Selectively and with Picomolar Affinity to α7 Nicotinic Acetylcholine Receptors. J. Neurochem. 75: 1155–1161. PubMed
Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, et al. (2004) ABAD Directly Links Aß to Mitochondrial Toxicity in Alzheimer's Disease. Science 304: 448–452. PubMed
Milton NG (1999) Amyloid-beta binds catalase with high affinity and inhibits hydrogen peroxide breakdown. Biochem. J. 344: 293–296. PubMed PMC
Milton NG, Mayor NP, Rawlinson J (2001) Identification of amyloid-[beta] binding sites using an antisense peptide approach. Neuroreport 12: 2561–2566. PubMed
Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution Structure of Amyloid β-Peptide(1−40) in a Water−Micelle Environment. Is the Membrane-Spanning Domain Where We Think It Is? Biochem. 37: 11064–11077. PubMed
Sticht H, Bayer P, Willbold D, Dames S, Hilbich C, et al. (1995) Structure of Amyloid A4-(1–40)-Peptide of Alzheimer's Disease. Eur. J. Biochem. 233: 293–298. PubMed
Schladitz C, Vieira EP, Hermel H, Möhwald H (1999) Amyloid–β-Sheet Formation at the Air-Water Interface. Biophys. J. 77: 3305–3310. PubMed PMC
Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, et al. (2001) Alzheimer's Disease Amyloid-β Binds Copper and Zinc to Generate an Allosterically Ordered Membrane-penetrating Structure Containing Superoxide Dismutase-like Subunits. J. Biol. Chem. 276: 20466–20473. PubMed
Mastrangelo IA, Ahmed M, Sato T, Liu W, Wang C, et al. (2006) High-resolution Atomic Force Microscopy of Soluble Aβ42 Oligomers. J. Mol. Biol. 358: 106–119. PubMed
Losic D, Martin LL, Mechler A, Aguilar M-I, Small DH (2006) High resolution scanning tunnelling microscopy of the β-amyloid protein (Aβ1–40) of Alzheimer's disease suggests a novel mechanism of oligomer assembly. J. Struct. Biol. 155: 104–110. PubMed
Dominy BN, Perl D, Schmid FX, Brooks CL (2002) The effects of ionic strength on protein stability: the cold shock protein family. J. Mol. Biol. 319: 541–554. PubMed
Otzen DE (2002) Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophys. J. 83: 2219–2230. PubMed PMC
Stine WB, Dahlgren KN, Krafft GA, LaDu MJ (2003) In Vitro Characterization of Conditions for Amyloid-β Peptide Oligomerization and Fibrillogenesis. J. Biol.l Chem. 278: 11612–11622. PubMed
Podlisny MB, Tolan DR, Selkoe DJ (1991) Homology of the amyloid beta protein precursor in monkey and human supports a primate model for beta amyloidosis in Alzheimer's disease. Am. J. Pathol. 138: 1423–1435. PubMed PMC
Pawlik M, Fuchs E, Walker LC, Levy E (1999) Primate-like amyloid-β sequence but no cerebral amyloidosis in aged tree shrews. Neurobiol. Aging 20: 47–51. PubMed
Tomaselli S, Esposito V, Vangone P, Van Nuland NAJ, Bonvin AMJJ, et al. (2006) The α-to-β Conformational Transition of Alzheimer's Aβ-(1–42) Peptide in Aqueous Media is Reversible: A Step by Step Conformational Analysis Suggests the Location of β Conformation Seeding. Chem. Bio. Chem. 7: 257–267. PubMed
Prokop M, Adam J, Kříž Z, Wimmerová M, Koča J (2008) TRITON: a graphical tool for ligand-binding protein engineering. Bioinformatics 24: 1955–1956. PubMed PMC
Sali A, Blundell TL (1993) Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 234: 779–815. PubMed
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79: 926–929.
Grubmuller H (1996) Solvate: a program to create atomic solvent models.
Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, et al.. (2011) AMBER. Available: http://ambermd.org/.
Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, et al. (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24: 1999–2012. PubMed
Florová P, Sklenovský P, Banáš P, Otyepka M (2010) Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact. J. Chem. Theor. Comput. 6: 3569–3579. PubMed
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, et al. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct. Func. Bioinform. 65: 712–725. PubMed PMC
Sklenovský P, Banáš P, Otyepka M (2008) Two C-terminal ankyrin repeats form the minimal stable unit of the ankyrin repeat protein p18INK4c. J. Mol. Mod. 14: 747–759. PubMed
Lepšík M, Kříž Z, Havlas Z (2004) Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Proteins: Struct. Func. Bioinform. 57: 279–293. PubMed
Otyepka M, Bártová I, Kříž Z, Koča J (2006) Different mechanisms of CDK5 and CDK2 activation as revealed by CDK5/p25 and CDK2/cyclin A dynamics. J. Biol. Chem. 281: 7271–7281. PubMed
Ryckaert J, Ciccotti G, Berendsen H (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23: 327–341.
Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81: 3684–3690.
Kabsch W, Sander C (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637. PubMed
Shao J, Tanner SW, Thompson N, Cheatham TE (2007) Clustering Molecular Dynamics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms. J. Chem. Theor. Comput. 3: 2312–2334. PubMed
Marshall KE, Morris KL, Charlton D, O'Reilly N, Lewis L, et al. (2011) Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability. Biochem. 50: 2061–2071. PubMed
Urbanc B, Cruz L, Yun S, Buldyrev SV, Bitan G, et al. (2004) In silico study of amyloid β-protein folding and oligomerization. PNAS 101: 17345–17350. PubMed PMC
Shafrir Y, Durell SR, Anishkin A, Guy HR (2010) Beta-barrel models of soluble amyloid beta oligomers and annular protofibrils. Proteins 78: 3458–3472. PubMed PMC
Zidar J, Merzel F (2011) Probing amyloid-beta fibril stability by increasing ionic strengths. J. Phys. Chem. B 115: 2075–2081. PubMed