European invasion of North American Pinus strobus at large and fine scales: high genetic diversity and fine-scale genetic clustering over time in the adventive range

. 2013 ; 8 (7) : e68514. [epub] 20130710

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23874648

BACKGROUND: North American Pinus strobus is a highly invasive tree species in Central Europe. Using ten polymorphic microsatellite loci we compared various aspects of the large-scale genetic diversity of individuals from 30 sites in the native distribution range with those from 30 sites in the European adventive distribution range. To investigate the ascertained pattern of genetic diversity of this intercontinental comparison further, we surveyed fine-scale genetic diversity patterns and changes over time within four highly invasive populations in the adventive range. RESULTS: Our data show that at the large scale the genetic diversity found within the relatively small adventive range in Central Europe, surprisingly, equals the diversity found within the sampled area in the native range, which is about thirty times larger. Bayesian assignment grouped individuals into two genetic clusters separating North American native populations from the European, non-native populations, without any strong genetic structure shown over either range. In the case of the fine scale, our comparison of genetic diversity parameters among the localities and age classes yielded no evidence of genetic diversity increase over time. We found that SGS differed across age classes within the populations under study. Old trees in general completely lacked any SGS, which increased over time and reached its maximum in the sapling stage. CONCLUSIONS: Based on (1) the absence of difference in genetic diversity between the native and adventive ranges, together with the lack of structure in the native range, and (2) the lack of any evidence of any temporal increase in genetic diversity at four highly invasive populations in the adventive range, we conclude that population amalgamation probably first happened in the native range, prior to introduction. In such case, there would have been no need for multiple introductions from previously isolated populations, but only several introductions from genetically diverse populations.

Zobrazit více v PubMed

Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77: 1655–1661.

Reichard SH, Hamilton CW (1997) Predicting invasions of woody plants introduced into North America. Conserv Biol 11: 193–794.

Mandák B (2003) Germination requirements of invasive and non-invasive Atriplex species: a comparative study. Flora 198: 45–54.

Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78: 81–92.

Herben T, Mandák B, Bímová K, Münzbergová Z (2004) Invasibility and species richness of a community: A neutral model and a survey of published data. Ecology 85: 3223–3233.

Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88: 528–534.

Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion – implications for conservations. Conserv Biol 6: 324–337.

Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288: 852–854. PubMed

Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst. 40: 81–102.

Crawley MJ (1978) What makes a community invasible? In: Gray AJ, Crawley MJ, Edwards PJ, editors. Colonization, succession and stability. Oxford: Blackwell Scientific. 429–453.

Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions - the role of mutualism. Biol Rev Camb Philos Soc 75: 65–93. PubMed

Lonsdale WM (1999) Global pattern of plant invasion and the concept of invasibility. Ecology 80: 1522–1536.

Tilman D (1999) The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80: 1455–1474.

Williamson M (1996) Biological Invasions. London: Chapman & Hall. 244 p.

van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM, Fischer M (2010) Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol Lett 13: 947–958. PubMed

Mandák B, Pyšek P, Lysák M, Suda J, Krahulcová A, et al. (2003) Variation in DNA-ploidy levels of Reynoutria taxa in the Czech Republic. Ann Bot 92: 265–272. PubMed PMC

Mandák B, Bímová K, Pyšek P, Štěpánek J, Plačková I (2005) Isoenzyme diversity in Reynoutria taxa: escape from sterility by hybridization. Plant Syst Evol 253: 219–230.

Zhang YY, Zhang DY, Barrett SCH (2010) Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol Ecol 19: 1774–1786. PubMed

Lambrinos JG (2004) How interactions between ecology and evolution influence contemporary invasion dynamics. Ecology 85: 2061–2070.

Dlugosh KM, Parker IM (2008) Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Heredity 11: 701–709. PubMed

Zenger KR, Richardson BJ, Vachot-Griffin AM (2003) A rapid population expansion retains genetic diversity within European rabbits in Australia. Mol Ecol 12: 789–794. PubMed

Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus of the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97: 7043–7050. PubMed PMC

Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99: 11256–11259. PubMed PMC

Kolbe JJ, Glor RE, Rodriguez-Schettino L, Chamizo-Lara A, Larson A, et al. (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431: 177–181. PubMed

Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14: 4275–4285. PubMed

Marrs RA, Sforza R, Hufbauer RA (2008) Evidence for multiple introductions of Centaurea stoebe micranthos (spotted knapweed, Asteraceae) to North America. Mol Ecol 17: 4197–4208. PubMed

Rosenthal DM, Ramakrishnan AP, Cruzan MB (2008) Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Mol Ecol 17: 4657–4669. PubMed

Keller SR, Taylor DR (2010) Genomic admixture increases fitness during a biological invasion. J Evol Biol 23: 1720–1731. PubMed

Mandák B, Pyšek P (1998) History of spread and habitat preferences of Atriplex sagittata (Chenopodiaceae) in the Czech Republic. In: Starfinger U, Edwards K, Kowarik I, Williamson M, editors. Plant ivasions: ecological mechanisms and human responses. Leiden: Backhuys Publisher. 209–224.

Crooks JA, Soulé ME (1999) Lag times in population explosions of invasive species: causes and implications. In: Sandlund OT, Schei PJ, Viken A, editors. Invasive species and biodiversity management. Dordrecht: Kluwer Academic Publisher. 103–125.

Mandák B (2003) Distribution of four Atriplex species with different degrees of invasiveness in the Czech Republic. In: Child LE, Brock JH, Brundu G, Prach K, Pyšek P, Wade PM, Williamson M, editors. Plant Invasions: Ecological Threats and Management Solutions. Leiden: Backhuys Publisher. 313–328.

Mandák B, Pyšek P, Bímová K (2004) History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia 76: 15–64.

Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pyšek P, Prach K, Rejmánek M, Wade PM, editors. Plant invasions: general aspects and special problems. Amsterdam: SPB Academic Publishing. 15–38.

Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, et al. (2007) Multiple sources, admixture, and genetic variation in introduced Anolis lizard populations. Conserv Biol 21: 1612–1625. PubMed

Kolbe JJ, Larson A, Losos JB, de Queiroz K (2008) Admixture determines genetic diversity and population differentiation in the biological invasion of a lizard species. Biol Lett 4: 434–437. PubMed PMC

Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104: 3883–3888. PubMed PMC

Chun YJ, Fumanal B, Laitung B, Bretagnolle F (2010) Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France. New Phytol 185: 1100–1107. PubMed

Zayed A, Whitfield CW (2008) A genome wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera . Proc Natl Acad Sci USA 105: 3421–3426. PubMed PMC

Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154: 1309–1321. PubMed PMC

Troupin D, Nathan R, Vendramin GG (2006) Analysis of spatial genetic structure in an expanding Pinus halepensis populations reveals development of fine-scale genetic clustering over time. Mol Ecol 15: 3617–3630. PubMed

Berg EE, Hamrick JL (1995) Fine-scale genetic structure of a turkey oak forest. Evolution 49: 110–120. PubMed

Vekemans X, Hardy OJ (2004) New insight from fine-scale spatial genetic structure analysis in plant populations. Mol Ecol 13: 921–935. PubMed

Young AG, Merriam HG (1994) Effects of forest fragmentation on the spatial genetic structure of Acer saccharum Marsh. (sugar maple) populations. Heredity 72: 201–208.

Parker KC, Hamrick JL, Parker AJ, Nason JD (2001) Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: Effects of disturbance history. Heredity 87: 99–113. PubMed

Premoli AC, Kitzberger T (2005) Regeneration mode affects spatial genetic structure of Nothofagus dombeyi forests. Mol Ecol 14: 2319–2329. PubMed

Pardini EA, Hamrick JL (2008) Inferring recruitment history from spatial genetic structure within populations of the colonizing tree Albizia julibrissin (Fabaceae). Mol Ecol 17: 2865–2879. PubMed

Jones FA, Hamrick JL, Peterson CJ, Squiers ER (2006) Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra . Mol Ecol 15: 851–861. PubMed

Mandák B, Bímová K, Mahelka V, Plačková I (2006) How much genetic variation is stored in the seed bank? A study of Atriplex tatarica (Chenopodiaceae). Mol Ecol 15: 2653–2663. PubMed

Chung MY, Nason JD, Epperson BK, Chung MG (2003) Temporal aspects of the fine-scale genetic structure in a population of Cinnamomum insularimontanum (Lauraceae). Heredity 90: 98–106. PubMed

Epperson B (1992) Spatial structure of genetic variation within populations of forest trees. New Forests 6: 257–278.

Augspurger CK (1983) Seed dispersal of the tropical tree, Platypodium elegans, and the escape of its seedlings from fungal pathogens. J Ecol 71: 759–771.

Augspurger CK, Kelly CK (1984) Pathogen mortality of tropical tree seedlings - experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61: 211–217. PubMed

Hadincová V, Köhnleinová I, Marešová J (2007) Invasive behaviour of white pine (Pinus strobus) in sandstone areas in the Czech Republic. In: Härtel H, Cílek V, Herben T, Jackson A, Williams R, editors. Sandstones Landscapes. Praha: Academia. 219–224.

Nožička J (1965) Zavádění vejmutovky v Českých zemích do r. 1938 (Introduction of the white pine in the Czech countries up to year 1938). Práce výzkumného ústavu lesnického ČSSR 31: 41–67.

Pyšek P, Sádlo J, Mandák B (2002) Catalogue of alien plants of the Czech Republic. Preslia 74: 97–186.

Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, et al. (2000) Naturalization and invasion of alien plants: concepts and definitions. Diversity & Distributions 6: 93–107.

Wendel GW, Smith HC (1990) Pinus strobus L. Eastern white pine. In: Burns RM, Honkala BH, editors. Silvics of North America. Vol. 1. Conifers. U.S. Department of Agriculture, Forest Service. 476–488.

Foster DR, O’Keefe JF (2000) New England Forests through time: insights from the Harvard Forests Dioramas. Cumbreland, USA: Harvard University Press. 67 p.

Musil I (1971) K otázce původu evropských vejmutovkových porostů (On the question of the origin of European White Pine growths). Acta Musei Silesiae 129–134.

Münzbergová Z, Hadincová V, Wild J, Kindlmannová J (2013) Variability in the contribution of different life stages to population growth as a key factor in the invasion success of Pinus strobus . PLoS ONE 8: e56953. PubMed PMC

Hadincová V, Münzbergová Z, Wild J, Šajtar L, Marešová J (2008) Dispersal of invasive Pinus strobus in sandstone areas of the Czech Republic. In: Tokarska-Guzik B, Brock JH, Brundu G, Child LE, Daehler CC, Pyšek P, editors. Plant invasions: Human perception, ecological impacts and management. Leiden: Backhuys Publisher. 117–132.

Münzbergová Z, Hadincová V, Wild J, Herben T, Marešová J (2010) Spatial and temporal variation in dispersal pattern of an invasive pine. Biol Invasions 12: 2471–2486.

Robledo-Arnuncio JJ (2011) Wind pollination over mesoscale distances: an investigation with Scotch pine. New Phytol 190: 222–233. PubMed

Williams CG (2010) Long distance pollen still germinates after meso-scale dispersal. Am J Bot 97: 846–855. PubMed

Dovčiak M, Frelich LE, Reich E (2005) Pathway in old-field succession to white pine: seed rain, shade, and climate effects. Ecol Monogr 75: 363–378.

Musil I (1971) Provenienční výzkum vejmutovky (Pinus strobus L.) na Ostravsku (Local investigation of White Pine (Pinus strobus) in Ostrava region). Acta Musei Silesiae 97–128.

Davis MB (1993) Old growth in the East: a survey. Richmond, VT: Wild Earth.

Epperson BK, Chung MG (2001) Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). Am J Bot 88: 1006–1010. PubMed

Marquardt PE, Epperson BK (2004) Spatial and population genetic structure of microsatellites in white pine. Mol Ecol 13: 3305–3315. PubMed

Tolasz R (1997) Climate atlas of Czechia. Prague: Czech Hydrometeorological Institute.

Štorchová H, Hrdličková R, Chrtek Jr J, Tetera M, Fitze D, et al. (2000) An improved method for DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49: 79–84.

Echt CS, May-Marquardt P (1997) Survey of microsatellite DNA in pine. Genome 40: 9–17. PubMed

Echt CS, May-Marquardt P, Hseih M, Zahorchak R (1996) Characterization of microsatellite markers in eastern white pine. Genome 39: 1102–1108. PubMed

van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538.

El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92: 832–839. PubMed

Goudet J (1995) Fstat version 1.2: a computer program to calculate F-statistics. J Hered 86: 485–486.

Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370. PubMed

Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online 1: 47–50. PubMed PMC

Rice WR (1989) Analyzing tables of statistical tests. Evolution 43: 223–225. PubMed

Wright S (1965) The interpretation of population structure by F-statistics with special regard to system mating. Evolution 19: 395–420.

Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462. PubMed PMC

Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8: 1513–1520. PubMed

Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590. PubMed PMC

Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49: 1280–1283. PubMed

Sokal RR, Rohlf FJ (1995) Biometry: the principles and practise of statistics in biological research. 3nd edn. New York: WH Freeman and Company.

Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014. PubMed PMC

Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90: 503.

Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89: 238–247. PubMed

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959. PubMed PMC

Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9: 1322–1332. PubMed PMC

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14: 2611–2620. PubMed

Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15: 1419–1439. PubMed

Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806. PubMed

Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4: 137–138.

Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82: 1420–1425.

Kalisz S, Nason JD, Hanzawa FM, Tonsor SJ (2001) Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution 55: 1560–1568. PubMed

Rousset F (1996) Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics 142: 1357–1362. PubMed PMC

Cockerham CC (1969) Variance of gene frequencies. Evolution 23: 72–84. PubMed

Hardy OJ, Vekemans X (2002) SPAGeDi a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2: 618–620.

Beaulieu J, Simon JP (1994) Genetic structure and variability in Pinus strobus in Quebec. Can J For Res 24: 1726–1733.

Buchert GP, Rajora OP, Hood JV, Dancik BP (1997) Effects of harvesting on genetic diversity in old-growth Eastern White Pine in Ontario, Canada. Conserv Biol 11: 747–758.

Rajora OP, DeVerno L, Mosseler A, Innes DJ (1998) Genetic diversity and population structure of disjunct Newfoundland and central Ontario populations of eastern white pine (Pinus strobus). Can J Bot 76: 500–508.

Rajora OP, Rahman MH, Buchert GP, Dancik BP (2000) Microsatellite DNA analysis of genetic effects of harvesting in oldgrowth eastern white pine (Pinus strobus) in Ontario, Canada. Mol Ecol 9: 339–348. PubMed

Mehes M, Nkongolo KK, Michael P (2007) Genetic analysis of Pinus strobus and Pinus monticola populations from Canada using ISSR and RAPD markers: development of genome-specific SCAR markers. Plant Syst Evol 267: 47–63.

Mehes M, Nkongolo KK, Michael P (2009) Assessing genetic diversity and structure of fragmented populations of eastern white pine (Pinus strobus) and western white pine (P. monticola) for conservation management. J Plant Ecol 2: 143–151.

Myers ER, Chung MY, Chung MG (2007) Genetic diversity and spatial genetic structure of Pinus strobus (Pinaceae) across an island landscape inferred from allozyme and cpDNA markers. Plant Syst Evol 13: 15–30.

Walter R, Epperson BK (2004) Microsatellite analysis of spatial structure among seedlings in populations of Pinus strobus (Pinaceae). Am J Bot 91: 549–557. PubMed

Taylor DR, Keller SR (2007) Historical range expansion determines the phylogenic diversity introduced during contemporary species invasion. Evolution 61: 334–345. PubMed

Latta RG, Linhart YB, Fleck D, Elliot M (1998) Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine. Evolution 52: 61–67. PubMed

Latta RG, Mitton JB (1999) Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution 53: 61–67. PubMed

Jorgensen S, Hamrick JL, Wells PV (2002) Regional patterns of genetic diversity in Pinus flexilis (Pinaceae) reveal complex species history. Am J Bot 89: 792–800. PubMed

Richardson BA, Brunsfeld J, Klopfenstein NB (2002) DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization and population genetic structure of whitebark pine (Pinus albicaulis). Mol Ecol 11: 215–227. PubMed

Parchman TL, Benkman CW, Jenkins B, Buerkle CA (2011) Low levels of population genetic structure in Pinus contorta (Pinaceae) across a geographic mosaic of co-evolution. Am J Bot 98: 669–679. PubMed

Prus-Glowacki W, Urbaniak L, Bujas E, Curtu AL (2012) Genetic variation of isolated and peripheral populations of Pinus sylvestris (L.) from glacial refugia. Flora 207: 150–158.

Young RA, Giese RL (2003) Introduction to Forest Ecosytem, Science and Management. Madison: John Wiley & Sons.

Foster D (1992) Land-use history (1730–1990) and vegetation dynamics in central New England. J Ecol 80: 753–772.

Epperson BK, Allard RW (1989) Spatial autocorrelation analysis of the distribution of genotypes within populations lodgepole pine. Genetics 121: 369–377. PubMed PMC

Gapare WJ, Aitken SN (2005) Strong spatial genetic structure in peripheral but not core populations of Sitka spruce Picea sitchensis (Bong.) Carr. Mol Ecol 14: 2659–2667. PubMed

Epperson BK (2005) Estimating dispersal from short distance spatial autocorrelation. Heredity 95: 7–15. PubMed

Hamrick JL, Murawski DA, Nason JD (1993) The influence of seeds dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 108: 281–297.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Non-native populations of an invasive tree outperform their native conspecifics

. 2016 ; 8 () : . [epub] 20170102

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...