Spectral-domain measurements of birefringence and sensing characteristics of a side-hole microstructured fiber
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23989824
PubMed Central
PMC3821346
DOI
10.3390/s130911424
PII: s130911424
Knihovny.cz E-zdroje
- MeSH
- analýza selhání vybavení MeSH
- design vybavení MeSH
- dvojitý lom MeSH
- manometrie přístrojové vybavení metody MeSH
- měniče * MeSH
- poréznost MeSH
- refraktometrie přístrojové vybavení metody MeSH
- technologie optických vláken přístrojové vybavení MeSH
- testování materiálů MeSH
- tlak MeSH
- vyrobené materiály analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We experimentally characterized a birefringent side-hole microstructured fiber in the visible wavelength region. The spectral dependence of the group and phase modal birefringence was measured using the methods of spectral interferometry. The phase modal birefringence of the investigated fiber increases with wavelength, but its positive sign is opposite to the sign of the group modal birefringence. We also measured the sensing characteristics of the fiber using a method of tandem spectral interferometry. Spectral interferograms corresponding to different values of a physical parameter were processed to retrieve the spectral phase functions and to determine the spectral dependence of polarimetric sensitivity to strain, temperature and hydrostatic pressure. A negative sign of the polarimetric sensitivity was deduced from the simulation results utilizing the known modal birefringence dispersion of the fiber. Our experimental results show that the investigated fiber has a very high polarimetric sensitivity to hydrostatic pressure, reaching -200 rad x MPa(-1) x m(-1) at 750 nm.
Zobrazit více v PubMed
Fürstenau N., Schmidt M., Bock W.J., Urbańczyk W. Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout. Appl. Opt. 1998;37:663–671. PubMed
Bock W.J., Urbańczyk W. Temperature-desensitization of fiber-optic pressure sensor by simultaneous measurement of pressure and temperature. Appl. Opt. 1998;37:3897–3901. PubMed
Xie H.M., Dabkiewicz P., Ulrich R., Okamoto K. Side-hole fiber for fiber-optic pressure sensing. Opt. Lett. 1986;11:333–335. PubMed
Wojcik J., Mergo P., Urbańczyk W., Bock W. Possibilities of application of the side-hole circular core fibre in monitoring of high pressures. IEEE Trans. Instrum. Meas. 1998;47:805–808.
Tanaka S., Yoshida K., Kinugasa S., Ohtsuka Y. Birefringent side-hole fiber for use in strain sensor. Opt. Rev. 1997;4:A92–A95.
Ortigosa-Blanch A., Knight J.C., Wadsworth W.J., Arriaga J., Mangan B.J., Birks T.A., Russell P.St.J. Highly birefringent photonic crystal fibers. Opt. Lett. 2000;25:1325–1327. PubMed
Suzuki K., Kubota H., Kawanishi S., Tanaka M., Fujita M. Optical properties of a low-loss polarization maintaining photonic crystal fiber. Opt. Express. 2001;9:676–680. PubMed
Folkenberg J.R., Nielsen M.D., Mortensen N.A., Jakobsen C., Simonsen H.R. Polarization maintaining large mode area photonic crystal fiber. Opt. Express. 2004;12:956–960. PubMed
Kim D.H., Kang J.U. Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt. Express. 2004;12:4490–4495. PubMed
Zhao C.H.L., Yang X., Lu C., Jin W., Demokan M.S. Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. IEEE Photon. Technol. Lett. 2004;16:2535–2537.
Bock W.J., Chen J., Eftimov T., Urbańczyk W. A photonic crystal fiber sensor for pressure measurements. IEEE Trans. Instrum. Meas. 2006;55:1119–1123.
Fu H.Y., Tam H.Y., Shao L.Y., Dong X., Wai P.K., Lu C., Khijwania S.K. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 2008;47:2835–2839. PubMed
Martynkien T., Statkiewicz-Barabach G., Olszewski J., Wojcik J., Mergo P., Geernaert T., Sonnenfeld C., Anuszkiewicz A., Szczurkowski M. K., Tarnowski K., et al. Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure. Opt. Express. 2010;18:15113–15121. PubMed
Wu C., Li J., Feng X.H., Guan B.O., Tam H.Y. Side-hole photonic crystal fiber with ultrahigh polarimetric pressure sensitivity. J. Lightwave Technol. 2011;29:943–948.
Szpulak M., Martynkien T., Urbańczyk W. Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers. Appl. Opt. 2004;43:4739–4744. PubMed
Statkiewicz G., Martynkien T., Urbańczyk W. Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain. Opt. Commun. 2004;241:339–348.
Hlubina P., Olszewski J., Martynkien T., Mergo P., Makara M., Poturaj K., Urbańczyk W. Spectral-domain measurement of strain sensitivity of a two-mode birefringent side-hole fiber. Sensors. 2012;12:12070–12081. PubMed
Hlubina P., Martynkien T., Urban´czyk W. Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry. Opt. Express. 2003;11:2793–2798. PubMed
Hlubina P., Ciprian D., Kadulová M. Wide spectral range measurement of modal birefringence in polarization-maintaining fibres. Meas. Sci. Technol. 2009;20:025301. doi: 10.1088/0957-0233/20/2/025301. DOI
Cao X.D., Meyerhofer D.D. Frequency-domain interferometer for measurement of the polarization mode dispersion in single-mode optical fibers. Opt. Lett. 1994;19:1837–1839. PubMed
Hlubina P., Ciprian D., Knyblová L. Interference of white light in tandem configuration of birefringent crystal and sensing birefringent fiber. Opt. Commun. 2006;260:535–541.
Hlubina P., Ciprian D. Spectral-domain measurement of phase modal birefringence in polarization-maintaining fiber. Opt. Express. 2007;15:17019–17024. PubMed
Hlubina P., Olszewski J. Phase retrieval from spectral interferograms including a stationary-phase point. Opt. Commun. 2012;285:4733–4738.
Huang S.Y., Blake J.N., Kim B.Y. Perturbation effects on mode propagation in highly elliptical core two mode fibers. J. Lightwave Technol. 2010;8:23–33.
Urbańczyk W., Martynkien T., Bock W.J. Dispersion effects in elliptical-core highly birefringent fibers. Appl. Opt. 2001;40:1911–1920. PubMed
Anuszkiewicz A., Martynkien T., Mergo P., Makara M., Urbańczyk W. Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence. Opt. Express. 2013;21:12657–12667. PubMed
Hlubina P., Luňáček J., Ciprian D., Chlebus R. Windowed fourier transform applied in the wavelength domain to process the spectral interference signals. Opt. Commun. 2008;281:2349–2354.