Influence of root exudates on the bacterial degradation of chlorobenzoic acids
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24222753
PubMed Central
PMC3809935
DOI
10.1155/2013/872026
Knihovny.cz E-zdroje
- MeSH
- Arthrobacter izolace a purifikace metabolismus MeSH
- biodegradace účinky léků MeSH
- chlorbenzoáty metabolismus MeSH
- kořeny rostlin chemie MeSH
- Pseudomonas izolace a purifikace metabolismus MeSH
- rostlinné extrakty farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorbenzoáty MeSH
- rostlinné extrakty MeSH
Degradation of chlorobenzoic acids (e.g., products of microbial degradation of PCB) by strains of microorganisms isolated from PCB contaminated soils was assessed. From seven bulk-soil isolates two strains unique in ability to degrade a wider range of chlorobenzoic acids than others were selected, individually and even in a complex mixture of 11 different chlorobenzoic acids. Such a feature is lacking in most tested degraders. To investigate the influence of vegetation on chlorobenzoic acids degraders, root exudates of two plant species known for supporting PCB degradation in soil were tested. While with individual chlorobenzoic acids the presence of plant exudates leads to a decrease of degradation yield, in case of a mixture of chlorobenzoic acids either a change in bacterial degradation specificity, associated with 3- and 4-chlorobenzoic acid, or an extension of the spectrum of degraded chlorobenzoic acids was observed.
Zobrazit více v PubMed
Matějů V. Kompendium Sanačních Technologií. Chrudim, Czech Republic: Vodní zdroje Ekomonitor spol s. r. o.; 2006.
Adebusoye SA, Picardal FW, Ilori MO, Amund OO. Influence of chlorobenzoic acids on the growth and degradation potentials of PCB-degrading microorganisms. World Journal of Microbiology and Biotechnology. 2008;24(7):1203–1208.
Scholten JD, Chang K-H, Babbitt PC, Charest H, Sylvestre M, Dunaway-Mariano D. Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science. 1991;253(5016):182–185. PubMed
Hickey WJ, Focht DD. Degradation of mono-, di-, and trihalogenated benzoid acids by Pseudomonas aeruginosa JB2. Applied and Environmental Microbiology. 1990;56(12):3842–3850. PubMed PMC
Chatterjee DK, Kellogg ST, Hamada S, Chakrabarty AM. Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. Journal of Bacteriology. 1981;146(2):639–646. PubMed PMC
Providenti MA, Wyndham RC. Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Applied and Environmental Microbiology. 2001;67(8):3530–3541. PubMed PMC
Krooneman J, Slickers AO, Pedro Gomes TM, Forney LJ, Gottschal JC. Characterization of 3-chlorobenzoate degrading aerobic bacteria isolated under various environmental conditions. FEMS Microbiology Ecology. 2000;32(1):53–59. PubMed
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology. 2005;67(2):170–191. PubMed
Reineke W, Knackmuss HJ. Chemical structure and biodegradability of halogenate aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochimica et Biophysica Acta. 1978;542(3):412–423. PubMed
Demnerova K, Stiborova H, Leigh MB, et al. Bacteria degrading PCBs and CBs isolated from long-term PCB contaminated soil. Water, Air, and Soil Pollution. 2003;3(3):47–55.
Pavlů L, Vosáhlová J, Klierová H, Prouza M, Demnerová K, Brenner V. Characterization of chlorobenzoate degraders isolated from polychlorinated biphenyl-contaminated soil and sediment in the Czech Republic. Journal of Applied Microbiology. 1999;87(3):381–386. PubMed
Hernandez BS, Higson FK, Kondrat R, Focht DD. Metabolism of and inhibition by chlorobenzoates in Pseudomonas putida P111. Applied and Environmental Microbiology. 1991;57(11):3361–3366. PubMed PMC
Siciliano SD, Germida JJ. Degradation of chlorinated benzoic acid mixtures by plant-bacteria associations. Environmental Toxicology and Chemistry. 1998;17(4):728–733.
van den Tweel WJJ, Kok JB, de Bont JAM. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. Applied and Environmental Microbiology. 1987;53(4):810–815. PubMed PMC
Adebusoye SA, Miletto M. Characterization of multiple chlorobenzoic acid-degrading organisms from pristine and contaminated systems: mineralization of 2,4-dichlorobenzoic acid. Bioresource Technology. 2011;102(3):3041–3048. PubMed
Baggi G, Bernasconi S, Zangrossi M, Cavalca L, Andreoni V. Co-metabolism of di- and trichlorobenzoates in a 2-chlorobenzoate-degrading bacterial culture: effect of the position and number of halo-substituents. International Biodeterioration and Biodegradation. 2008;62(1):57–64.
Muzikář M, Křesinová Z, Svobodová K, et al. Biodegradation of chlorobenzoic acids by ligninolytic fungi. Journal of Hazardous Materials. 2011;196:386–394. PubMed
Baggi G, Zangrossi M. Degradation of chlorobenzoates in soil suspensions by indigenous populations and a specialized organism: interactions between growth and non-growth substrates. FEMS Microbiology Ecology. 1999;29(4):311–318.
Siciliano SD, Germida JJ. Enhanced phytoremediation of chlorobenzoates in rhizosphere soil. Soil Biology and Biochemistry. 1999;31(2):299–305.
Siciliano SD, Germida JJ. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil. Environmental Toxicology and Chemistry. 1997;16(6):1098–1104.
Macková M, Vrchotová B, Francová K, et al. Biotransformation of PCBs by plants and bacteria—consequences of plant-microbe interactions. European Journal of Soil Biology. 2007;43(4):233–241.
Deavers K, Macek T, Karlson UG, Trapp S. Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis) Environmental Science and Pollution Research. 2010;17(7):1355–1361. PubMed
Macek T, Macková M, Káš J. Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances. 2000;18(1):23–34. PubMed
Mackova M, Macek T, Dowling DN, editors. Phytoremediation and Rhizoremediation, Theoretical Background. Dordrecht, The Netherlands: Springer; 2006. (Focus on Biotechnology).
Hernandez BS, Koh S-C, Chial M, Focht DD. Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation. 1997;8(3):153–158.
Seal AN, Pratley JE, Haig T, An M. Identification and quantitation of compounds in a series of allelopathic and non-allelopathic rice root exudates. Journal of Chemical Ecology. 2004;30(8):1647–1662. PubMed