G-quadruplexes as sensing probes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
24288003
PubMed Central
PMC6270327
DOI
10.3390/molecules181214760
PII: molecules181214760
Knihovny.cz E-zdroje
- MeSH
- biosenzitivní techniky * MeSH
- delece genu MeSH
- DNA katalytická chemie MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- ionty analýza chemie MeSH
- kovy analýza chemie MeSH
- lidé MeSH
- nádorový supresorový protein p53 chemie genetika MeSH
- nanočástice chemie MeSH
- nukleové kyseliny analýza chemie MeSH
- organické látky analýza chemie MeSH
- proteiny analýza chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA katalytická MeSH
- DNA MeSH
- ionty MeSH
- kovy MeSH
- nádorový supresorový protein p53 MeSH
- nukleové kyseliny MeSH
- organické látky MeSH
- proteiny MeSH
Guanine-rich sequences of DNA are able to create tetrastranded structures known as G-quadruplexes; they are formed by the stacking of planar G-quartets composed of four guanines paired by Hoogsteen hydrogen bonding. G-quadruplexes act as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplexes form a complex with anionic porphyrin hemin and exhibit peroxidase-like activity. This review focuses on overview of sensing techniques based on G-quadruplex complexes with anionic porphyrins for detection of various analytes, including metal ions such as K+, Ca2+, Ag+, Hg2+, Cu2+, Pb2+, Sr2+, organic molecules, nucleic acids, and proteins. Principles of G-quadruplex-based detection methods involve DNA conformational change caused by the presence of analyte which leads to a decrease or an increase in peroxidase activity, fluorescence, or electrochemical signal of the used probe. The advantages of various detection techniques are also discussed.
Zobrazit více v PubMed
Kamenetskii F. Biophysics of the DNA molecule. Phys. Rep. Rev. Sect. Phys. Lett. 1997;288:13–60.
Pearson C.E., Sinden R.R. Trinucleotide repeat DNA structures: Dynamic mutations from dynamic DNA. Curr. Opin. Struct. Biol. 1998;8:321–330. doi: 10.1016/S0959-440X(98)80065-1. PubMed DOI
Doluca O., Withers J.M., Filichev V.V. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem. Rev. 2013;113:3044–3083. doi: 10.1021/cr300225q. PubMed DOI
Huppert J.L. Hunting G-quadruplexes. Biochimie. 2008;90:1140–1148. doi: 10.1016/j.biochi.2008.01.014. PubMed DOI
Keniry M.A. Quadruplex structures in nucleic acids. Biopolymers. 2001;56:123–146. doi: 10.1002/1097-0282(2000/2001)56:3<123::AID-BIP10010>3.0.CO;2-3. PubMed DOI
Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC
Patel D.J., Phan A.T., Kuryavyi V. Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res. 2007;35:7429–7455. doi: 10.1093/nar/gkm711. PubMed DOI PMC
Huppert J.L. Structure, location and interactions of G-quadruplexes. FEBS J. 2010;277:3452–3458. doi: 10.1111/j.1742-4658.2010.07758.x. PubMed DOI
Zimmerman S.B., Cohen G.H., Davies D.R. X-ray fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid. J. Mol. Biol. 1975;92:181–192. doi: 10.1016/0022-2836(75)90222-3. PubMed DOI
Sen D., Gilbert W. A sodium-potassium switch in the formation of 4-stranded G4-DNA. Nature. 1990;344:410–414. doi: 10.1038/344410a0. PubMed DOI
Davis J.T. G-quartets 40 years later: From 5'-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. Engl. 2004;43:668–698. doi: 10.1002/anie.200300589. PubMed DOI
Alberti P., Bourdoncle A., Sacca B., Lacroix L., Mergny J.L. DNA nanomachines and nanostructures involving quadruplexes. Org. Biomol. Chem. 2006;4:3383–3391. doi: 10.1039/b605739j. PubMed DOI
Oganesian L., Bryan T.M. Physiological relevance of telomeric G-quadruplex formation: A potential drug target. Bioessays. 2007;29:155–165. doi: 10.1002/bies.20523. PubMed DOI
Zhou J., Bourdoncle A., Rosu F., Gabelica V., Mergny J.L. Tri-G-quadruplex: Controlled assembly of a G-quadruplex structure from three G-rich strands. Angew. Chem. Int. Ed. Engl. 2012;51:11002–11005. doi: 10.1002/anie.201205390. PubMed DOI
Phan A.T., Mergny J.L. Human telomeric DNA: G-quadruplex, i-motif and watson-crick double helix. Nucleic Acids Res. 2002;30:4618–4625. doi: 10.1093/nar/gkf597. PubMed DOI PMC
Liu D.S., Balasubramanian S. A proton-fuelled DNA nanomachine. Angew. Chem. Int. Ed. Engl. 2003;42:5734–5736. doi: 10.1002/anie.200352402. PubMed DOI
Miyoshi D., Inoue M., Sugimoto N. DNA logic gates based on structural polymorphism of telomere DNA molecules responding to chemical input signals. Angew. Chem. Int. Ed. Engl. 2006;45:7716–7719. doi: 10.1002/anie.200602404. PubMed DOI
Krishnan Y., Simmel F.C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. Engl. 2011;50:3124–3156. doi: 10.1002/anie.200907223. PubMed DOI
Zhou J., Amrane S., Korkut D.N., Bourdoncle A., He H.Z., Ma D.L., Mergny J.L. Combination of i-Motif and G-quadruplex structures within the same Strand: Formation and application. Angew. Chem. Int. Ed. Engl. 2013;52:7742–7746. doi: 10.1002/anie.201301278. PubMed DOI
Travascio P., Li Y.F., Sen D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol. 1998;5:505–517. doi: 10.1016/S1074-5521(98)90006-0. PubMed DOI
Shlyahovsky B., Li D., Katz E., Willner I. Proteins modified with DNAzymes or aptamers act as biosensors or biosensor labels. Biosens. Bioelectron. 2007;22:2570–2576. doi: 10.1016/j.bios.2006.10.009. PubMed DOI
Zheng Z.Z., Han J., Pang W.S., Hu J. G-quadruplex DNAzyme molecular beacon for amplified colorimetric biosensing of pseudostellaria heterophylla. Sensors. 2013;13:1064–1075. doi: 10.3390/s130101064. PubMed DOI PMC
Li T., Dong S., Wang E. Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal. Chem. 2009;81:2144–2149. doi: 10.1021/ac900188y. PubMed DOI
Wang M., Han Y., Nie Z., Lei C., Huang Y., Guo M., Yao S. Development of a novel antioxidant assay technique based on G-quadruplex DNAzyme. Biosens. Bioelectron. 2010;26:523–529. doi: 10.1016/j.bios.2010.07.058. PubMed DOI
Zhou X.H., Kong D.M., Shen H.X. G-quadruplex-hemin DNAzyme-amplified colorimetric detection of Ag+ ion. Anal. Chim. Acta. 2010;678:124–127. doi: 10.1016/j.aca.2010.08.025. PubMed DOI
Qu K., Zhao C., Ren J., Qu X. Human telomeric G-quadruplex formation and highly selective fluorescence detection of toxic strontium ions. Mol. Biosyst. 2012;8:779–782. doi: 10.1039/c2mb05446a. PubMed DOI
Zhang L., Zhu J., Ai J., Zhou Z., Jia X., Wang E. Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(II) ion. Biosens. Bioelectron. 2013;39:268–273. doi: 10.1016/j.bios.2012.07.058. PubMed DOI
Kong D.M., Guo J.H., Yang W., Ma Y.E., Shen H.X. Crystal violet-G-quadruplex complexes as fluorescent sensors for homogeneous detection of potassium ion. Biosens. Bioelectron. 2009;25:88–93. doi: 10.1016/j.bios.2009.06.002. PubMed DOI
Qin H., Ren J., Wang J., Luedtke N.W., Wang E. G-quadruplex-modulated fluorescence detection of potassium in the presence of a 3500-fold excess of sodium ions. Anal. Chem. 2010;82:8356–8360. doi: 10.1021/ac101894b. PubMed DOI
Yang X., Li T., Li B.L., Wang E.K. Potassium-sensitive G-quadruplex DNA for sensitive visible potassium detection. Analyst. 2010;135:71–75. doi: 10.1039/b913036e. PubMed DOI
Liu Y., Li B., Cheng D., Duan X. Simple and sensitive fluorescence sensor for detection of potassium ion in the presence of high concentration of sodium ion using berberine-G-quadruplex complex as sensing element. Microchem. J. 2011;99:503–507. doi: 10.1016/j.microc.2011.07.001. DOI
Kong D.M., Cai L.L., Shen H.X. Quantitative detection of Ag+ and cysteine using G-quadruplex-hemin DNAzymes. Analyst. 2010;135:1253–1258. doi: 10.1039/b925168e. PubMed DOI
Jia S.M., Liu X.F., Li P., Kong D.M., Shen H.X. G-quadruplex DNAzyme-based Hg2+ and cysteine sensors utilizing Hg2+-mediated oligonucleotide switching. Biosens. Bioelectron. 2011;27:148–152. doi: 10.1016/j.bios.2011.06.032. PubMed DOI
Li T., Wang E.K., Dong S.J. Potassium-lead-switched G-quadruplexes: A new class of DNA logic gates. J. Am. Chem. Soc. 2009;131:15082–15083. doi: 10.1021/ja9051075. PubMed DOI
Wang Y., Wang J.A., Yang F., Yang X.R. Spectrophotometric detection of lead(II) ion using unimolecular peroxidase-like deoxyribozyme. Microchim. Acta. 2010;171:195–201. doi: 10.1007/s00604-010-0418-x. DOI
Li T., Wang E., Dong S. Lead(II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal. Chem. 2010;82:1515–1520. doi: 10.1021/ac902638v. PubMed DOI
Li C.-L., Liu K.-T., Lin Y.-W., Chang H.-T. Fluorescence detection of lead(II) ions through their induced catalytic activity of DNAzymes. Anal. Chem. 2010;83:225–230. PubMed
Guo L.Q., Nie D.D., Qiu C.Y., Zheng Q.S., Wu H.Y., Ye P.R., Hao Y.L., Fu F.F., Chen G.N. A G-quadruplex based label-free fluorescent biosensor for lead ion. Biosens. Bioelectron. 2012;35:123–127. doi: 10.1016/j.bios.2012.02.031. PubMed DOI
Li M., Zhou X.J., Guo S.W., Wu N.Q. Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 2013;43:69–74. doi: 10.1016/j.bios.2012.11.039. PubMed DOI
Leung K.-H., He H.-Z., Zhong H.-J., Lu L., Chan D.S.-H., Ma D.-L., Leung C.-H. A highly sensitive G-quadruplex-based luminescent switch-on probe for the detection of polymerase 3'–5' proofreading activity. Methods. 2013 doi: 10.1016/j.ymeth.2013.05.017. PubMed DOI
Li T., Liang G., Li X. Chemiluminescence assay for the sensitive detection of iodide based on extracting Hg2+ from a T-Hg2+-T complex. Analyst. 2013;138:1898–1902. doi: 10.1039/c3an36673a. PubMed DOI
Li H.L., Liu J.Y., Fang Y.X., Qin Y.A., Xu S.L., Liu Y.Q., Wang E.K. G-quadruplex-based ultrasensitive and selective detection of histidine and cysteine. Biosens. Bioelectron. 2013;41:563–568. doi: 10.1016/j.bios.2012.09.024. PubMed DOI
Li H., Wu Z., Qiu L., Liu J., Wang C., Shen G., Yu R. Ultrasensitive label-free amplified colorimetric detection of p53 based on G-quadruplex MBzymes. Biosens. Bioelectron. 2013;50:180–185. doi: 10.1016/j.bios.2013.06.041. PubMed DOI
Zhao J.J., Chen C.F., Zhang L.L., Jiang J.H., Shen G.L., Yu R.Q. A Hg2+-mediated label-free fluorescent sensing strategy based on G-quadruplex formation for selective detection of glutathione and cysteine. Analyst. 2013;138:1713–1718. doi: 10.1039/c3an36657j. PubMed DOI
Su H.C., Qiao F.M., Duan R.H., Chen L.J., Ai S.Y. A novel label-free optical cysteine sensor based on the competitive oxidation reaction catalyzed by G-quadruplex halves. Biosens. Bioelectron. 2013;43:268–273. doi: 10.1016/j.bios.2012.12.032. PubMed DOI
Bo H., Wang C., Gao Q., Qi H., Zhang C. Selective, colorimetric assay of glucose in urine using G-quadruplex-based DNAzymes and 10-acetyl-3,7-dihydroxy phenoxazine. Talanta. 2013;108:131–135. doi: 10.1016/j.talanta.2013.03.001. PubMed DOI
Li R., Xiong C., Xiao Z., Ling L. Colorimetric detection of cholesterol with G-quadruplex-based DNAzymes and ABTS(2−) Anal. Chim. Acta. 2012;724:80–85. doi: 10.1016/j.aca.2012.02.015. PubMed DOI
Liu F., Zhang J.A., Chen R., Chen L.L., Deng L. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor. Chem. Biodivers. 2011;8:311–316. doi: 10.1002/cbdv.201000130. PubMed DOI
Liu L., Liang Z.Q., Li Y.J. Label free, highly sensitive and selective recognition of small molecule using gold surface confined aptamers. Solid State Sci. 2012;14:1060–1063. doi: 10.1016/j.solidstatesciences.2012.05.025. DOI
Du Y., Li B.L., Guo S.J., Zhou Z.X., Zhou M., Wang E.K., Dong S.J. G-Quadruplex-based DNAzyme for colorimetric detection of cocaine: Using magnetic nanoparticles as the separation and amplification element. Analyst. 2011;136:493–497. doi: 10.1039/c0an00557f. PubMed DOI
Wang X.P., Yin B.C., Wang P., Ye B.C. Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplex DNAzyme. Biosens. Bioelectron. 2013;42:131–135. doi: 10.1016/j.bios.2012.10.097. PubMed DOI
He H.Z., Chan D.S.H., Leung C.H., Ma D.L. A highly selective G-quadruplex-based luminescent switch-on probe for the detection of gene deletion. Chem. Commun. 2012;48:9462–9464. doi: 10.1039/c2cc32253f. PubMed DOI
Qiu B., Zhang Y.S., Lin Y.B., Lu Y.J., Lin Z.Y., Wong K.Y., Chen G.N. A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter. Biosens. Bioelectron. 2013;41:168–171. doi: 10.1016/j.bios.2012.08.017. PubMed DOI
Leung K.H., He H.Z., Ma V.P.Y., Yang H., Chan D.S.H., Leung C.H., Ma D.L. A G-quadruplex-selective luminescent switch-on probe for the detection of sub-nanomolar human neutrophil elastase. RSC Adv. 2013;3:1656–1659. doi: 10.1039/c2ra21996d. DOI
Hu D., Pu F., Huang Z.Z., Ren J.S., Qu X.G. A Quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition. Chem. Eur. J. 2010;16:2605–2610. doi: 10.1002/chem.200902166. PubMed DOI
Li T., Wang E.K., Dong S.J. G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chem. Commun. 2008;2008:3654–3656. PubMed
Li T., Wang E., Dong S.J. Chemiluminescence thrombin aptasensor using high-activity DNAzyme as catalytic label. Chem. Commun. 2008;2008:5520–5522. PubMed
Jiang B., Wang M., Li C., Xie J. Label-free and amplified aptasensor for thrombin detection based on background reduction and direct electron transfer of hemin. Biosens. Bioelectron. 2013;43:289–292. doi: 10.1016/j.bios.2012.12.038. PubMed DOI
Li T., Shi L.L., Wang E.K., Dong S.J. Multifunctional G-quadruplex aptamers and their application to protein detection. Chemistry. 2009;15:1036–1042. doi: 10.1002/chem.200801282. PubMed DOI
Wang G., He X., Chen L., Zhu Y., Zhang X., Wang L. Conformational switch for cisplatin with hemin/G-quadruplex DNAzyme supersandwich structure. Biosens. Bioelectron. 2013;50:210–216. doi: 10.1016/j.bios.2013.06.046. PubMed DOI
Jia S.M., Liu X.F., Kong D.M., Shen H.X. A simple, post-additional antioxidant capacity assay using adenosine triphosphate-stabilized 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical cation in a G-quadruplex DNAzyme catalyzed ABTS-H2O2 system. Biosens. Bioelectron. 2012;35:407–412. doi: 10.1016/j.bios.2012.03.029. PubMed DOI
Zhou X.H., Kong D.M., Shen H.X. Ag+ and cysteine quantitation based on G-quadruplex-Hemin DNAzymes disruption by Ag+ Anal. Chem. 2010;82:789–793. doi: 10.1021/ac902421u. PubMed DOI
Leung K.H., Ma V.P.Y., He H.Z., Chan D.S.H., Yang H., Leung C.H., Ma D.L. A highly selective G-quadruplex-based luminescent switch-on probe for the detection of nanomolar strontium(II) ions in sea water. RSC Adv. 2012;2:8273–8276. doi: 10.1039/c2ra21119j. DOI
Chen C.E., Zhao C.Q., Yang X.J., Ren J.S., Qu X.G. Enzymatic manipulation of DNA-modified gold nanoparticles for screening G-quadruplex ligands and evaluating selectivities. Adv. Mater. 2010;22:389–393. doi: 10.1002/adma.200901924. PubMed DOI
Crouse H.F., Doudt A., Zerbe C., Basu S. Detection of quadruplex DNA by gold nanoparticles. J. Anal. Methods Chem. 2012;2012:1–7. doi: 10.1155/2012/327603. PubMed DOI PMC
Zhou Y.L., Wang M., Meng X.M., Yin H.S., Ai S.Y. Amplified electrochemical microRNA biosensor using a hemin-G-quadruplex complex as the sensing element. RSC Adv. 2012;2:7140–7145. doi: 10.1039/c2ra20487h. DOI
Liang A., Li J., Jiang C., Jiang Z. Highly selective resonance scattering detection of trace thrombin using aptamer-modified AuRe nanoprobe. Bioprocess Biosyst. Eng. 2010;33:1087–1094. doi: 10.1007/s00449-010-0434-6. PubMed DOI
Gou X.C., Liu J., Zhang H.L. Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods. Anal. Chim. Acta. 2010;668:208–214. doi: 10.1016/j.aca.2010.04.027. PubMed DOI
Chen G., Jin Y., Wang W., Zhao Y. Colorimetric assay of lead using unmodified gold nanorods. Gold Bull. 2012;45:137–143. doi: 10.1007/s13404-012-0057-6. DOI
Chen Z.B., Huang Y.Q., Li X.X., Zhou T., Ma H., Qiang H., Liu Y.F. Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles. Anal. Chim. Acta. 2013;787:189–192. doi: 10.1016/j.aca.2013.05.020. PubMed DOI