G-quadruplexes as sensing probes

. 2013 Nov 28 ; 18 (12) : 14760-79. [epub] 20131128

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid24288003

Guanine-rich sequences of DNA are able to create tetrastranded structures known as G-quadruplexes; they are formed by the stacking of planar G-quartets composed of four guanines paired by Hoogsteen hydrogen bonding. G-quadruplexes act as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplexes form a complex with anionic porphyrin hemin and exhibit peroxidase-like activity. This review focuses on overview of sensing techniques based on G-quadruplex complexes with anionic porphyrins for detection of various analytes, including metal ions such as K+, Ca2+, Ag+, Hg2+, Cu2+, Pb2+, Sr2+, organic molecules, nucleic acids, and proteins. Principles of G-quadruplex-based detection methods involve DNA conformational change caused by the presence of analyte which leads to a decrease or an increase in peroxidase activity, fluorescence, or electrochemical signal of the used probe. The advantages of various detection techniques are also discussed.

Zobrazit více v PubMed

Kamenetskii F. Biophysics of the DNA molecule. Phys. Rep. Rev. Sect. Phys. Lett. 1997;288:13–60.

Pearson C.E., Sinden R.R. Trinucleotide repeat DNA structures: Dynamic mutations from dynamic DNA. Curr. Opin. Struct. Biol. 1998;8:321–330. doi: 10.1016/S0959-440X(98)80065-1. PubMed DOI

Doluca O., Withers J.M., Filichev V.V. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem. Rev. 2013;113:3044–3083. doi: 10.1021/cr300225q. PubMed DOI

Huppert J.L. Hunting G-quadruplexes. Biochimie. 2008;90:1140–1148. doi: 10.1016/j.biochi.2008.01.014. PubMed DOI

Keniry M.A. Quadruplex structures in nucleic acids. Biopolymers. 2001;56:123–146. doi: 10.1002/1097-0282(2000/2001)56:3<123::AID-BIP10010>3.0.CO;2-3. PubMed DOI

Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC

Patel D.J., Phan A.T., Kuryavyi V. Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res. 2007;35:7429–7455. doi: 10.1093/nar/gkm711. PubMed DOI PMC

Huppert J.L. Structure, location and interactions of G-quadruplexes. FEBS J. 2010;277:3452–3458. doi: 10.1111/j.1742-4658.2010.07758.x. PubMed DOI

Zimmerman S.B., Cohen G.H., Davies D.R. X-ray fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid. J. Mol. Biol. 1975;92:181–192. doi: 10.1016/0022-2836(75)90222-3. PubMed DOI

Sen D., Gilbert W. A sodium-potassium switch in the formation of 4-stranded G4-DNA. Nature. 1990;344:410–414. doi: 10.1038/344410a0. PubMed DOI

Davis J.T. G-quartets 40 years later: From 5'-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. Engl. 2004;43:668–698. doi: 10.1002/anie.200300589. PubMed DOI

Alberti P., Bourdoncle A., Sacca B., Lacroix L., Mergny J.L. DNA nanomachines and nanostructures involving quadruplexes. Org. Biomol. Chem. 2006;4:3383–3391. doi: 10.1039/b605739j. PubMed DOI

Oganesian L., Bryan T.M. Physiological relevance of telomeric G-quadruplex formation: A potential drug target. Bioessays. 2007;29:155–165. doi: 10.1002/bies.20523. PubMed DOI

Zhou J., Bourdoncle A., Rosu F., Gabelica V., Mergny J.L. Tri-G-quadruplex: Controlled assembly of a G-quadruplex structure from three G-rich strands. Angew. Chem. Int. Ed. Engl. 2012;51:11002–11005. doi: 10.1002/anie.201205390. PubMed DOI

Phan A.T., Mergny J.L. Human telomeric DNA: G-quadruplex, i-motif and watson-crick double helix. Nucleic Acids Res. 2002;30:4618–4625. doi: 10.1093/nar/gkf597. PubMed DOI PMC

Liu D.S., Balasubramanian S. A proton-fuelled DNA nanomachine. Angew. Chem. Int. Ed. Engl. 2003;42:5734–5736. doi: 10.1002/anie.200352402. PubMed DOI

Miyoshi D., Inoue M., Sugimoto N. DNA logic gates based on structural polymorphism of telomere DNA molecules responding to chemical input signals. Angew. Chem. Int. Ed. Engl. 2006;45:7716–7719. doi: 10.1002/anie.200602404. PubMed DOI

Krishnan Y., Simmel F.C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. Engl. 2011;50:3124–3156. doi: 10.1002/anie.200907223. PubMed DOI

Zhou J., Amrane S., Korkut D.N., Bourdoncle A., He H.Z., Ma D.L., Mergny J.L. Combination of i-Motif and G-quadruplex structures within the same Strand: Formation and application. Angew. Chem. Int. Ed. Engl. 2013;52:7742–7746. doi: 10.1002/anie.201301278. PubMed DOI

Travascio P., Li Y.F., Sen D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol. 1998;5:505–517. doi: 10.1016/S1074-5521(98)90006-0. PubMed DOI

Shlyahovsky B., Li D., Katz E., Willner I. Proteins modified with DNAzymes or aptamers act as biosensors or biosensor labels. Biosens. Bioelectron. 2007;22:2570–2576. doi: 10.1016/j.bios.2006.10.009. PubMed DOI

Zheng Z.Z., Han J., Pang W.S., Hu J. G-quadruplex DNAzyme molecular beacon for amplified colorimetric biosensing of pseudostellaria heterophylla. Sensors. 2013;13:1064–1075. doi: 10.3390/s130101064. PubMed DOI PMC

Li T., Dong S., Wang E. Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal. Chem. 2009;81:2144–2149. doi: 10.1021/ac900188y. PubMed DOI

Wang M., Han Y., Nie Z., Lei C., Huang Y., Guo M., Yao S. Development of a novel antioxidant assay technique based on G-quadruplex DNAzyme. Biosens. Bioelectron. 2010;26:523–529. doi: 10.1016/j.bios.2010.07.058. PubMed DOI

Zhou X.H., Kong D.M., Shen H.X. G-quadruplex-hemin DNAzyme-amplified colorimetric detection of Ag+ ion. Anal. Chim. Acta. 2010;678:124–127. doi: 10.1016/j.aca.2010.08.025. PubMed DOI

Qu K., Zhao C., Ren J., Qu X. Human telomeric G-quadruplex formation and highly selective fluorescence detection of toxic strontium ions. Mol. Biosyst. 2012;8:779–782. doi: 10.1039/c2mb05446a. PubMed DOI

Zhang L., Zhu J., Ai J., Zhou Z., Jia X., Wang E. Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(II) ion. Biosens. Bioelectron. 2013;39:268–273. doi: 10.1016/j.bios.2012.07.058. PubMed DOI

Kong D.M., Guo J.H., Yang W., Ma Y.E., Shen H.X. Crystal violet-G-quadruplex complexes as fluorescent sensors for homogeneous detection of potassium ion. Biosens. Bioelectron. 2009;25:88–93. doi: 10.1016/j.bios.2009.06.002. PubMed DOI

Qin H., Ren J., Wang J., Luedtke N.W., Wang E. G-quadruplex-modulated fluorescence detection of potassium in the presence of a 3500-fold excess of sodium ions. Anal. Chem. 2010;82:8356–8360. doi: 10.1021/ac101894b. PubMed DOI

Yang X., Li T., Li B.L., Wang E.K. Potassium-sensitive G-quadruplex DNA for sensitive visible potassium detection. Analyst. 2010;135:71–75. doi: 10.1039/b913036e. PubMed DOI

Liu Y., Li B., Cheng D., Duan X. Simple and sensitive fluorescence sensor for detection of potassium ion in the presence of high concentration of sodium ion using berberine-G-quadruplex complex as sensing element. Microchem. J. 2011;99:503–507. doi: 10.1016/j.microc.2011.07.001. DOI

Kong D.M., Cai L.L., Shen H.X. Quantitative detection of Ag+ and cysteine using G-quadruplex-hemin DNAzymes. Analyst. 2010;135:1253–1258. doi: 10.1039/b925168e. PubMed DOI

Jia S.M., Liu X.F., Li P., Kong D.M., Shen H.X. G-quadruplex DNAzyme-based Hg2+ and cysteine sensors utilizing Hg2+-mediated oligonucleotide switching. Biosens. Bioelectron. 2011;27:148–152. doi: 10.1016/j.bios.2011.06.032. PubMed DOI

Li T., Wang E.K., Dong S.J. Potassium-lead-switched G-quadruplexes: A new class of DNA logic gates. J. Am. Chem. Soc. 2009;131:15082–15083. doi: 10.1021/ja9051075. PubMed DOI

Wang Y., Wang J.A., Yang F., Yang X.R. Spectrophotometric detection of lead(II) ion using unimolecular peroxidase-like deoxyribozyme. Microchim. Acta. 2010;171:195–201. doi: 10.1007/s00604-010-0418-x. DOI

Li T., Wang E., Dong S. Lead(II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal. Chem. 2010;82:1515–1520. doi: 10.1021/ac902638v. PubMed DOI

Li C.-L., Liu K.-T., Lin Y.-W., Chang H.-T. Fluorescence detection of lead(II) ions through their induced catalytic activity of DNAzymes. Anal. Chem. 2010;83:225–230. PubMed

Guo L.Q., Nie D.D., Qiu C.Y., Zheng Q.S., Wu H.Y., Ye P.R., Hao Y.L., Fu F.F., Chen G.N. A G-quadruplex based label-free fluorescent biosensor for lead ion. Biosens. Bioelectron. 2012;35:123–127. doi: 10.1016/j.bios.2012.02.031. PubMed DOI

Li M., Zhou X.J., Guo S.W., Wu N.Q. Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 2013;43:69–74. doi: 10.1016/j.bios.2012.11.039. PubMed DOI

Leung K.-H., He H.-Z., Zhong H.-J., Lu L., Chan D.S.-H., Ma D.-L., Leung C.-H. A highly sensitive G-quadruplex-based luminescent switch-on probe for the detection of polymerase 3'–5' proofreading activity. Methods. 2013 doi: 10.1016/j.ymeth.2013.05.017. PubMed DOI

Li T., Liang G., Li X. Chemiluminescence assay for the sensitive detection of iodide based on extracting Hg2+ from a T-Hg2+-T complex. Analyst. 2013;138:1898–1902. doi: 10.1039/c3an36673a. PubMed DOI

Li H.L., Liu J.Y., Fang Y.X., Qin Y.A., Xu S.L., Liu Y.Q., Wang E.K. G-quadruplex-based ultrasensitive and selective detection of histidine and cysteine. Biosens. Bioelectron. 2013;41:563–568. doi: 10.1016/j.bios.2012.09.024. PubMed DOI

Li H., Wu Z., Qiu L., Liu J., Wang C., Shen G., Yu R. Ultrasensitive label-free amplified colorimetric detection of p53 based on G-quadruplex MBzymes. Biosens. Bioelectron. 2013;50:180–185. doi: 10.1016/j.bios.2013.06.041. PubMed DOI

Zhao J.J., Chen C.F., Zhang L.L., Jiang J.H., Shen G.L., Yu R.Q. A Hg2+-mediated label-free fluorescent sensing strategy based on G-quadruplex formation for selective detection of glutathione and cysteine. Analyst. 2013;138:1713–1718. doi: 10.1039/c3an36657j. PubMed DOI

Su H.C., Qiao F.M., Duan R.H., Chen L.J., Ai S.Y. A novel label-free optical cysteine sensor based on the competitive oxidation reaction catalyzed by G-quadruplex halves. Biosens. Bioelectron. 2013;43:268–273. doi: 10.1016/j.bios.2012.12.032. PubMed DOI

Bo H., Wang C., Gao Q., Qi H., Zhang C. Selective, colorimetric assay of glucose in urine using G-quadruplex-based DNAzymes and 10-acetyl-3,7-dihydroxy phenoxazine. Talanta. 2013;108:131–135. doi: 10.1016/j.talanta.2013.03.001. PubMed DOI

Li R., Xiong C., Xiao Z., Ling L. Colorimetric detection of cholesterol with G-quadruplex-based DNAzymes and ABTS(2−) Anal. Chim. Acta. 2012;724:80–85. doi: 10.1016/j.aca.2012.02.015. PubMed DOI

Liu F., Zhang J.A., Chen R., Chen L.L., Deng L. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor. Chem. Biodivers. 2011;8:311–316. doi: 10.1002/cbdv.201000130. PubMed DOI

Liu L., Liang Z.Q., Li Y.J. Label free, highly sensitive and selective recognition of small molecule using gold surface confined aptamers. Solid State Sci. 2012;14:1060–1063. doi: 10.1016/j.solidstatesciences.2012.05.025. DOI

Du Y., Li B.L., Guo S.J., Zhou Z.X., Zhou M., Wang E.K., Dong S.J. G-Quadruplex-based DNAzyme for colorimetric detection of cocaine: Using magnetic nanoparticles as the separation and amplification element. Analyst. 2011;136:493–497. doi: 10.1039/c0an00557f. PubMed DOI

Wang X.P., Yin B.C., Wang P., Ye B.C. Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplex DNAzyme. Biosens. Bioelectron. 2013;42:131–135. doi: 10.1016/j.bios.2012.10.097. PubMed DOI

He H.Z., Chan D.S.H., Leung C.H., Ma D.L. A highly selective G-quadruplex-based luminescent switch-on probe for the detection of gene deletion. Chem. Commun. 2012;48:9462–9464. doi: 10.1039/c2cc32253f. PubMed DOI

Qiu B., Zhang Y.S., Lin Y.B., Lu Y.J., Lin Z.Y., Wong K.Y., Chen G.N. A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter. Biosens. Bioelectron. 2013;41:168–171. doi: 10.1016/j.bios.2012.08.017. PubMed DOI

Leung K.H., He H.Z., Ma V.P.Y., Yang H., Chan D.S.H., Leung C.H., Ma D.L. A G-quadruplex-selective luminescent switch-on probe for the detection of sub-nanomolar human neutrophil elastase. RSC Adv. 2013;3:1656–1659. doi: 10.1039/c2ra21996d. DOI

Hu D., Pu F., Huang Z.Z., Ren J.S., Qu X.G. A Quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition. Chem. Eur. J. 2010;16:2605–2610. doi: 10.1002/chem.200902166. PubMed DOI

Li T., Wang E.K., Dong S.J. G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chem. Commun. 2008;2008:3654–3656. PubMed

Li T., Wang E., Dong S.J. Chemiluminescence thrombin aptasensor using high-activity DNAzyme as catalytic label. Chem. Commun. 2008;2008:5520–5522. PubMed

Jiang B., Wang M., Li C., Xie J. Label-free and amplified aptasensor for thrombin detection based on background reduction and direct electron transfer of hemin. Biosens. Bioelectron. 2013;43:289–292. doi: 10.1016/j.bios.2012.12.038. PubMed DOI

Li T., Shi L.L., Wang E.K., Dong S.J. Multifunctional G-quadruplex aptamers and their application to protein detection. Chemistry. 2009;15:1036–1042. doi: 10.1002/chem.200801282. PubMed DOI

Wang G., He X., Chen L., Zhu Y., Zhang X., Wang L. Conformational switch for cisplatin with hemin/G-quadruplex DNAzyme supersandwich structure. Biosens. Bioelectron. 2013;50:210–216. doi: 10.1016/j.bios.2013.06.046. PubMed DOI

Jia S.M., Liu X.F., Kong D.M., Shen H.X. A simple, post-additional antioxidant capacity assay using adenosine triphosphate-stabilized 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical cation in a G-quadruplex DNAzyme catalyzed ABTS-H2O2 system. Biosens. Bioelectron. 2012;35:407–412. doi: 10.1016/j.bios.2012.03.029. PubMed DOI

Zhou X.H., Kong D.M., Shen H.X. Ag+ and cysteine quantitation based on G-quadruplex-Hemin DNAzymes disruption by Ag+ Anal. Chem. 2010;82:789–793. doi: 10.1021/ac902421u. PubMed DOI

Leung K.H., Ma V.P.Y., He H.Z., Chan D.S.H., Yang H., Leung C.H., Ma D.L. A highly selective G-quadruplex-based luminescent switch-on probe for the detection of nanomolar strontium(II) ions in sea water. RSC Adv. 2012;2:8273–8276. doi: 10.1039/c2ra21119j. DOI

Chen C.E., Zhao C.Q., Yang X.J., Ren J.S., Qu X.G. Enzymatic manipulation of DNA-modified gold nanoparticles for screening G-quadruplex ligands and evaluating selectivities. Adv. Mater. 2010;22:389–393. doi: 10.1002/adma.200901924. PubMed DOI

Crouse H.F., Doudt A., Zerbe C., Basu S. Detection of quadruplex DNA by gold nanoparticles. J. Anal. Methods Chem. 2012;2012:1–7. doi: 10.1155/2012/327603. PubMed DOI PMC

Zhou Y.L., Wang M., Meng X.M., Yin H.S., Ai S.Y. Amplified electrochemical microRNA biosensor using a hemin-G-quadruplex complex as the sensing element. RSC Adv. 2012;2:7140–7145. doi: 10.1039/c2ra20487h. DOI

Liang A., Li J., Jiang C., Jiang Z. Highly selective resonance scattering detection of trace thrombin using aptamer-modified AuRe nanoprobe. Bioprocess Biosyst. Eng. 2010;33:1087–1094. doi: 10.1007/s00449-010-0434-6. PubMed DOI

Gou X.C., Liu J., Zhang H.L. Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods. Anal. Chim. Acta. 2010;668:208–214. doi: 10.1016/j.aca.2010.04.027. PubMed DOI

Chen G., Jin Y., Wang W., Zhao Y. Colorimetric assay of lead using unmodified gold nanorods. Gold Bull. 2012;45:137–143. doi: 10.1007/s13404-012-0057-6. DOI

Chen Z.B., Huang Y.Q., Li X.X., Zhou T., Ma H., Qiang H., Liu Y.F. Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles. Anal. Chim. Acta. 2013;787:189–192. doi: 10.1016/j.aca.2013.05.020. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...