Distinct optical chemistry of dissolved organic matter in urban pond ecosystems
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24348908
PubMed Central
PMC3865342
DOI
10.1371/journal.pone.0080334
PII: PONE-D-13-22257
Knihovny.cz E-resources
- MeSH
- Ecosystem MeSH
- Organic Chemicals chemistry MeSH
- Ponds chemistry MeSH
- Fresh Water MeSH
- Carbon chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Organic Chemicals MeSH
- Carbon MeSH
Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L(-1) across the ponds with an average value of 5.3 mg C L(-1). Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems.
See more in PubMed
Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277: 494-499. doi:10.1126/science.277.5325.494. DOI
Lee JG, Heaney JP (2003) Estimation of urban imperviousness and its impacts on stormwater systems. J Water Resour Plan Manag 129: 419-426. doi:10.1061/(ASCE)0733-9496(2003)129:5(419). DOI
Wissmar RC, Timm RK, Logsdon MG (2004) Effects of changing forest and impervious land covers on discharge characteristics of watersheds. Environ Manag 34: 91-98. PubMed: 15088123. PubMed
Crowe AS, Rochfort Q, Exall K, Marsalek J (2007) Controlling urban stormwater pollution by constructed wetlands: a Canadian perspective. Int J Water 3: 214-230. doi:10.1504/IJW.2007.015215. DOI
Brand AB, Snodgrass JW (2010) Value of artificial habitats for amphibian reproduction in altered landscapes. Conserv Biol 24(1): 295-301. doi:10.1111/j.1523-1739.2009.01301.x. PubMed: 19681986. PubMed DOI
Hamer AJ, Parris KM (2011) Local and landscape determinants of amphibian communities in urban ponds. Ecol Appl 21: 378-390. doi:10.1890/10-0390.1. PubMed: 21563570. PubMed DOI
Williams CJ, Frost PC, Xenopoulos MA (2013) Beyond best management practices: pelagic biogeochemical dynamics in urban stormwater ponds. Ecol Appl, 23: 1384–95. doi:101890/12-08251. PubMed: 24147410. PubMed
Downing JA (2010) Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29(1): 9-24.
Einsele G, Yan J, Hinderer M (2001) Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Glob Planet Change 30: 167-195. doi:10.1016/S0921-8181(01)00105-9. DOI
Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ et al. (2006) The global abundance and size distribution of lakes ponds and impoundments. Limnol Oceanogr 51: 2388-2397. doi:10.4319/lo.2006.51.5.2388. DOI
Downing JA, Cole JJ, Middelburg J, Striegl RG, Duarte CM et al. (2008) Sediment carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogoechemical Cycles 22: GB1018 doi:10.1029/2006GB002854. DOI
Caraco NF, Cole JJ (2004) When terrestrial organic matter is sent down the river: importance of allochthonous C inputs to the metabolism in lakes and rivers. In: Polis A, Power ME. Food webs at the landscape level. Chicago University of Chicago Press; pp. 301-316.
Hanson PC, Pollard AI, Bade DL, Predick K, Carpenter SR et al. (2004) A model of carbon evasion and sedimentation in temperate lakes. Glob Change Biol 10: 1285-1298. doi:10.1111/j.1529-8817.2003.00805.x. DOI
Prairie YT, Bird DF, Cole JJ (2002) The summer metabolic balance in the epilimnion of southeastern Quebec lakes. Limnol Oceanogr 47: 316-321. doi:10.4319/lo.2002.47.1.0316. DOI
Kritzberg ES, Cole JJ, Pace MM, Granéli W (2005) Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquat Microb Ecol 38: 103-111. doi:10.3354/ame038103. DOI
Hook AM, Yeakley A (2005) Stormflow dynamics of dissolved organic carbon and total dissolved nitrogen in a small urban watershed. Biogeochemistry 75(3): 409-431. doi:10.1007/s10533-005-1860-4. DOI
Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32: 333-365. doi:10.1146/annurev.ecolsys.32.081501.114040. DOI
Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM et al. (2005) The urban stream syndrome: current knowledge and search for a cure. J North Benthol Soc 24: 706-723. doi:10.1899/0887-3593(2005)024 DOI
Williams CJ, Yamashita Y, Wilson HF, Jaffé R, Xenopoulos MA (2010) Unraveling the role of landuse and microbial activity in shaping dissolved organic matter characteristics in streams. Limnol Oceanogr 55: 1159-1171. doi:10.4319/lo.2010.55.3.1159. DOI
Wilson HF, Xenopoulos MA (2009) Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2: 37-41. doi:101038/ngeo391.
Baker A (2001) Fluorescence Excitation-Emission matrix characterization of some sewage-impacted rivers. Environ Sci Technol 35: 948-953. doi:10.1021/es000177t. PubMed: 11351540. PubMed DOI
McKnight DM, Aitken GR, Smith RL (1991) Aquatic fulvic acids in microbially based ecosystems: Results from two desert lakes in Antarctica. Limnol Oceanogr 36: 998-1006. doi:10.4319/lo.1991.36.5.0998. DOI
Bertilsson S, Jones JL (2003) Supply of dissolved organic matter to aquatic ecosystems: Autochthonous sources In: Findlay SEG, Sinsabaugh RL. Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press; pp. 3-25.
Tranvik LJ, Bertilsson S (2001) Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol Lett 4: 458-463. doi:10.1046/j.1461-0248.2001.00245.x. DOI
Anesio AM, Li WG, Aiken GR, Kieber DJ, Mopper K (2005) Effect of humic substance photodegradation on bacterial growth and respiration in lake water. Appl Environ Microbiol 71: 6267-6275. doi:10.1128/AEM.71.10.6267-6275.2005. PubMed: 16204548. PubMed DOI PMC
Bertilsson S, Tranvik LJ (2000) Photochemical transformation of dissolved organic matter in lakes. Limnol Oceanogr 45: 753-762. doi:10.4319/lo.2000.45.4.0753. DOI
Obernosterer I, Reitner B, Herndl GJ (1999) Contrasting effects of solar radiation on dissolved organic matter and its bioavailability to marine bacterioplankton. Limnol Oceanogr 44: 1645- 1654. doi:10.4319/lo.1999.44.7.1645. DOI
Obernosterer I, Sempere R, Herndl GJ (2001) Ultraviolet radiation induces reversal of the bioavailability of DOM to marine bacterioplankton. Aquat Microbiol 24: 61-68. doi:10.3354/ame024061. DOI
Kaiser E, Sulzberger B (2004) Phototransformation of riverine dissolved organic matter (DOM) in the presence of abundant iron: Effect on DOM bioavailability. Limnol Oceanogr 49: 540-555. doi:10.4319/lo.2004.49.2.0540. DOI
Mayer LM, Schick LL, Hardy KR, Estapa ML (2009) Photodissolution and other photochemical chances upon irradiation of algal detritus. Limnol Oceanogr 54: 1688-1698. doi:10.4319/lo.2009.54.5.1688. DOI
McEnroe NA, Buttle JM, Pick FR, Xenopoulos MA, Frost PC (2012) Thermal and chemical stratification of urban ponds: Are they ‘completely mixed reactors’? Urban Ecosyst 16: 327-339.
Kirk JT (1994) Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press.
Maurice PA, Cabaniss SE, Drummond J, Ito E (2002) Hydrogeochemical controls on the variations in chemical characteristics of natural organic matter at a small freshwater wetland. Chem Geol 187: 59-77. doi:10.1016/S0009-2541(02)00016-5. DOI
Cuthbert ID, del Giorgio PA (1992) Toward a standard method of measuring color in freshwater. Limnol Oceanogr 37: 1319-1326. doi:10.4319/lo.1992.37.6.1319. DOI
Mobed JJ, Hemmingsen SL, Autry JL, McGown LB (1996) Fluorescence characterisation of IHSS humic substances: Total luminescence spectra with absorbance correction. Environ Sci Technol 30: 3061-3065. doi:10.1021/es960132l. DOI
Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38: 45-50. doi:10.1016/S0045-6535(98)00166-0. PubMed: 10903090. PubMed DOI
Parlanti E, Worz K, Geoffroy L, Lamotte M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 31: 1765-1781. doi:10.1016/S0146-6380(00)00124-8. DOI
Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ et al. (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight source and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53(3): 955-969. doi:10.4319/lo.2008.53.3.0955. DOI
Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidised and reduced quinones in dissolved organic matter. Environ Sci Technol 39: 8142-8149. doi:10.1021/es0506962. PubMed: 16294847. PubMed DOI
Petrone JB, Fellman JB, Hood E, Donn MJ, Grierson PF (2011) The origin and function of dissolved organic matter in agro-urban coastal streams. J Geophys Res 116: G01028. doi:101029/2010JG001537.
Stedmon CA, Markager S (2005) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50: 686-697. doi:10.4319/lo.2005.50.2.0686. DOI
Coble PG, Green SA, Blough NV, Gagosian RB (1990) Characterisation of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348: 432-435. doi:10.1038/348432a0. DOI
Maie N, Pisani O, Jaffé R (2008) Mangrove tannins in aquatic ecosystems: their fate and possible influence on dissolved organic carbon and nitrogen cycling. Limnol Oceanogr 53: 160-171. doi:10.4319/lo.2008.53.1.0160. DOI
Del Vecchio R, Blough NV (2002) Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modelling. Mar Chem 78 (4): 231–253. doi:10.1016/S0304-4203(02)00036-1. DOI
Porcal P, Amirbahman A, Kopáček J, Novák F, Norton SA (2009) Photochemical release of humic and fulvic acid-bound metals from simulated soil and streamwater. J Environ Monit 11: 1064-1071. doi:10.1039/b812330f. PubMed: 19436866. PubMed DOI
Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM et al. (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40: 706-719. doi:10.1016/j.orggeochem.2009.03.002. DOI
Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL et al. (2005) Ecosystems subsidies: Terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86: 2737-2750. doi:10.1890/04-1282. DOI
Stanley EH, Powers SM, Lottig NR, Buffam I, Crawford JT (2012) Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshw Biol 57: 26-42. doi:10.1111/j.1365-2427.2011.02613.x. DOI
Osburn CL, Wigdahl CR, Frotz SC, Saros E (2011) Dissolved organic matter composition and photoreactivity in prairie lakes of the US Great Plains. Limnol Oceanogr 56(6): 2371-2390. doi:10.4319/lo.2011.56.6.2371. DOI
Yamashita Y, Scinto LJ, Maie N, Jaffé R (2010) Dissolved organic matter characteristics across a subtropical wetland’s landscape: Application of optical properties in the assessment of environmental dynamics. Ecosystems 13: 1006–1019. doi:10.1007/s10021-010-9370-1. DOI
Porcal P, Hejzlar J, Kopacek J (2004) Seasonal and photochemical changes of DOM in an acidified forest lake and its tributaries. Aquat Sci 66: 211-222. doi:10.1007/s00027-004-0701-1. DOI
Ruiz-Gonzáles C, Simó R, Sommaruga R, Gasol JM (2013) Away from darkness. A review on the effects of solar radiation on heterotrophic bacterioplankron activity. Frontiers in Microbiol. p. 4. doi:10.3389/fmicb.2013.00131. PubMed DOI PMC
Zepp RG, Wolfe NL, Baughman GL, Hollis RC (1977) Singlet oxygen in natural waters. Nature 267: 421-423. doi:10.1038/267421a0. DOI
Xenopoulos MA, Bird DF (1997) Effect of acute exposure to hydrogen peroxide on the production of phytoplankton and bacterioplankton in a mesohumic lake. Photochem Photobiol 66: 471-478. doi:10.1111/j.1751-1097.1997.tb03175.x. DOI
Scully NM, Cooper WJ, Tranvik LJ (2003) Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiol Ecol 46: 353-357. doi:10.1016/S0168-6496(03)00198-3. PubMed: 19719565. PubMed DOI
Glaeser J, Nuss AM, Berghoff BA, Klug G (2011) Singlet oxygen stress in microorganisms. Adv Microb Physiol 58: 141-173. doi:10.1016/B978-0-12-381043-4.00004-0. PubMed: 21722793. PubMed DOI
Kritzberg ES, Cole JJ, Pace MM, Granéli W (2006) Bacterial growth on allochthonous carbon in humic and nutrient enriched lakes: Results from whole lake 13C additions. Ecosystems 9: 489-499. doi:10.1007/s10021-005-0115-5. DOI
Mladenov N, Huntsman-Mapila P, Wolski P, Masamba WRL, McKnight DM (2008) Dissolved organic matter accumulation reactivity and redox state in ground water of a recharge wetland. Wetlands 28: 747-759. doi:10.1672/07-140.1. DOI
Wu FC, Kothawala DN, Evans RD, Dillon PJ, Cai YR (2007) Relationship between DOC concentration molecular size and fluorescence properties of DOM in a stream. Appl Geochem 22: 1659-1667. doi:10.1016/j.apgeochem.2007.03.024. DOI
Frost PC, Larson JH, Johnston CA, Young KC, Maurice PA et al. (2006) Landscape predictor s of stream dissolved organic matter concentration and physicochemistry in a Lake Superior river watershed. Aquat Sci 68: 40-51. doi:10.1007/BF02508824. DOI
McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T (2001) Spectroflurometric characterisation of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46(1): 38-48. doi:10.4319/lo.2001.46.1.0038. DOI
Chin YP, Aiken G, O’Loughlin E (1994) Molecular weight polydispersity and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28: 1853-1858. doi:10.1021/es00060a015. PubMed: 22175925. PubMed DOI
Chin Y-P, Aiken GR, Danielsen KM (1997) Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ Sci Technol 31: 1630-1635. doi:10.1021/es960404k. DOI
Miller MP, McKnight DM, Chapra SC, Williams MW (2009) A model of degradation and production of three pools of dissolved organic matter in an alpine lake. Limnol Oceanogr 54(6): 2213-2227. doi:10.4319/lo.2009.54.6.2213. DOI
Reche I, Pace ML, Cole JJ (1999) Relationship of trophic and chemical conditions to photobleaching of dissolved organic matter in lake ecosystems. Biogeochemistry 44: 259-280. doi:10.1007/BF00996993. DOI