• This record comes from PubMed

Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA

. 2014 Apr ; 46 (2) : 147-56. [epub] 20140223

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

See more in PubMed

J Biol Chem. 2010 Oct 1;285(40):30792-803 PubMed

Genes Dev. 2011 Jun 15;25(12):1289-305 PubMed

Mitochondrion. 2012 Mar;12(2):190-201 PubMed

Am J Hum Genet. 2012 Nov 2;91(5):912-8 PubMed

Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):998-1007 PubMed

Acc Chem Res. 2012 Jul 17;45(7):1113-21 PubMed

Acta Biochim Pol. 2010;57(4):403-8 PubMed

Mol Biol Cell. 1998 Sep;9(9):2375-82 PubMed

Cell Cycle. 2007 Oct 15;6(20):2473-7 PubMed

J Control Release. 2003 Sep 19;92(1-2):189-97 PubMed

Methods. 2008 Jul;45(3):223-6 PubMed

FASEB J. 2012 Oct;26(10):4187-97 PubMed

Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):914-20 PubMed

Mitochondrion. 2013 Sep;13(5):548-58 PubMed

J Mol Biol. 2010 Apr 16;397(5):1144-55 PubMed

Nat Protoc. 2011 Jun 16;6(7):991-1009 PubMed

Biochim Biophys Acta. 2009 May;1787(5):320-7 PubMed

Mitochondrion. 2007 Jul;7(4):260-6 PubMed

Nucleic Acids Res. 2001 May 1;29(9):1852-63 PubMed

Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4840-5 PubMed

Biochim Biophys Acta. 2008 Feb;1778(2):423-32 PubMed

Annu Rev Biochem. 2007;76:679-99 PubMed

RNA. 2008 Apr;14(4):749-59 PubMed

Mol Cell Biol. 2011 Dec;31(24):4994-5010 PubMed

RNA. 2010 May;16(5):926-41 PubMed

Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):970-8 PubMed

Trends Biochem Sci. 2009 Jul;34(7):358-65 PubMed

Biochem J. 2012 Jun 15;444(3):357-73 PubMed

Nucleic Acids Res. 2013 Jan 7;41(1):418-33 PubMed

Science. 2006 Oct 20;314(5798):471-4 PubMed

Int J Biochem Cell Biol. 2013 Mar;45(3):593-603 PubMed

J Biol Chem. 2008 Feb 8;283(6):3665-3675 PubMed

Int Rev Cell Mol Biol. 2011;287:145-90 PubMed

Biochemistry (Mosc). 2008 Dec;73(13):1418-37 PubMed

Cell. 2010 Aug 6;142(3):456-67 PubMed

Nucleic Acids Res. 2011 Aug;39(14):e96 PubMed

Nat Genet. 1999 Oct;23(2):147 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...