An Accessible Chiral Linker to Enhance Potency and Selectivity of Neuronal Nitric Oxide Synthase Inhibitors
Status PubMed-not-MEDLINE Language English Country United States Media print
Document type Journal Article
Grant support
R01 GM049725
NIGMS NIH HHS - United States
R01 GM052419
NIGMS NIH HHS - United States
R01 GM057353
NIGMS NIH HHS - United States
PubMed
24660051
PubMed Central
PMC3960082
DOI
10.1021/ml400381s
Knihovny.cz E-resources
- Keywords
- enzyme inhibition, neurodegenerative diseases, nitric oxide, nitric oxide synthase,
- Publication type
- Journal Article MeSH
The three important mammalian isozymes of nitric oxide synthase (NOS) are neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). Inhibitors of nNOS show promise as treatments for neurodegenerative diseases. Eight easily-synthesized compounds containing either one (20a,b) or two (9a-d; 15a,b) 2-amino-4-methylpyridine groups with a chiral pyrrolidine linker were designed as selective nNOS inhibitors. Inhibitor 9c is the best of these compounds, having a potency of 9.7 nM and dual selectivity of 693 and 295 against eNOS and iNOS, respectively. Crystal structures of nNOS complexed with either 9a or 9c show a double-headed binding mode, where each 2-aminopyridine head group interacts with either a nNOS active site Glu residue or a heme propionate. In addition, the pyrrolidine nitrogen of 9c contributes additional hydrogen bonds to the heme propionate, resulting in a unique binding orientation. In contrast, the lack of hydrogen bonds from the pyrrolidine of 9a to the heme propionate allows the inhibitor to adopt two different binding orientations. Both 9a and 9c bind to eNOS in a single-headed mode, which is the structural basis for the isozyme selectivity.
See more in PubMed
Zhang L.; Dawson V. L.; Dawson T. M. Role of Nitric Oxide in Parkinson’s Disease. Pharmacol. Ther. 2006, 109, 33–41. PubMed
Dorheim M.-A.; Tracey W. R.; Pollock J. S.; Grammas P. Nitric Oxide Synthase Activity Is Elevated in Brain Microvessels in Alzheimer’s Disease. Biochem. Biophys. Res. Commun. 1994, 205, 659–665. PubMed
Norris P. J.; Waldvogel H. J.; Faull R. L. M.; Love D. R.; Emson P. C. Decreased Neuronal Nitric Oxide Synthase Messenger RNA and Somatostatin Messenger RNA in the Striatum of Huntington’s Disease. Neuronsicence 1996, 72, 1037–1047. PubMed
Ashina M. Nitric Oxide Synthase Inhibitors for the Treatment of Chronic Tension-Type Headache. Exp. Opin. Pharmacother. 2002, 3, 395–399. PubMed
Sims N. R.; Anderson M. F. Mitochondrial Contributions to Tissue Damage in Stroke. Neurochem. Int. 2002, 40, 511–526. PubMed
Alderton W. K.; Cooper C. E.; Knowles R. G. Nitric Oxide Synthases: Structure, Function and Inhibition. Biochem. J. 2001, 357, 593–615. PubMed PMC
Southan G. J.; Szabó C. Selective Pharmacological Inhibition of Distinct Nitric Oxide Synthase Isoforms. Biochem. Pharmacol. 1996, 51, 383–394. PubMed
Babu B. R.; Griffith O. W. Design of Isoform-Selective Inhibitors of Nitric Oxide Synthase. Curr. Opin. Chem. Biol. 1998, 2, 491–500. PubMed
Ji H.; Erdal E. P.; Litzinger E. A.; Seo J.; Zhu Y.; Xue F.; Fang J.; Huang J.; Silverman R. B. In Frontiers in Medicinal Chemistry; Reitz A. B., Choudhary M. I., Atta-ur-Rahman, Eds.; Bentham Science Publishers: Oak Park, IL, 2009; Vol. 5, pp 842–882.
Hanessian S.; Stoffman E.; Mi X.; Renton P. Applications of Organocatalytic Asymmetric Synthesis to Drug Prototypes: Dual Action and Selective Inhibitors of n-Nitric Oxide Synthase with Activity Against the 5-HT1D/1B Subreceptors. Org. Lett. 2011, 13, 840–843. PubMed
Ramnauth J.; Speed J.; Maddaford S. P.; Dove P.; Annedi S. C.; Renton P.; Rakhit S.; Andrews J.; Silverman S.; Mladenova G.; Zinghini S.; Nair S.; Catalano C.; Lee D. K. H.; De Felice M.; Porreca F. Design, Synthesis, and Biological Evaluation of 3,4-Dihydroquinolin-2(1H)-one and 1,2,3,4-Tetrahydroquinoline-Based Selective Human Neuronal Nitric Oxide Synthase (nNOS) Inhibitors. J. Med. Chem. 2011, 54, 5562–5575. PubMed PMC
Maddaford S.; Annedi S. C.; Ramnauth J.; Rakhit S. Advancements in the Development of Nitric Oxide Synthase Inhibitors. Annu. Rep. Med. Chem. 2009, 44, 27–50.
Liang G.; Neuenschwander K.; Chen X.; Wei L.; Munson R.; Francisco G.; Scotese A.; Shutske G.; Black M.; Sarhan S.; Jiang J.; Morizea I.; Vaz R. J. Structure-Based Design, Synthesis, and Profiling of Potent and Selective Neuronal Nitric Oxide Synthase (nNOS) Inhibitors with an Amidinothiophene Hydroxypiperidine Scaffold. Med. Chem. Commun. 2011, 2, 201–205.
Silverman R. B. Design of Selective Neuronal Nitric Oxide Synthase Inhibitors for the Prevention and Treatment of Neurodegenerative Diseases. Acc. Chem. Res. 2009, 42, 439–451. PubMed PMC
Ji H.; Delker S. L.; Li H.; Martásek P.; Roman L. J.; Poulos T. L.; Silverman R. B. Exploration of the Active Site of Neuronal Nitric Oxide Synthase by the Design and Synthesis of Pyrrolidinomethyl 2-Aminopyridine Derivatives. J. Med. Chem. 2010, 53, 7804–7824. PubMed PMC
Xue F.; Delker S. L.; Li H.; Fang J.; Martásek P.; Roman L. J.; Poulos T. P.; Silverman R. B. Symmetrical Double-Headed Aminopyridines, a Novel Strategy for Potent and Membrane-Permeable Inhibitors of Neuronal Nitric Oxide Synthase. J. Med. Chem. 2011, 54, 2039–2048. PubMed PMC
Jing Q.; Li H.; Chreifi G.; Roman L. J.; Martásek P.; Poulos T. L.; Silverman R. B. Chiral Linkers to Improve Selectivity of Double-Headed Neuronal Nitric Oxide Synthase Inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 5674–5679. PubMed PMC
Xue F.; Gu W.; Silverman R. B. A Concise Route to the Chiral Pyrrolidine Core for Inhibitors of Neuronal Nitric Oxide Synthase. Org. Lett. 2009, 11, 5194–5197. PubMed PMC
Yuasa Y.; Shibuya S.; Yuasa Y. The Oxidation of 3-Aryl-1-propenes by Oxidative System of RuCl3-NaIO4-Phase Transfer Catalyst. Synth. Commun. 2003, 33, 3947–3952.
Poulos T. P.; Li H. Structural Basis for Isoform-Selective Inhibition in Nitric Oxide Synthase. Acc. Chem. Res. 2013, 46, 390–398. PubMed PMC